商家名称 | 信用等级 | 购买信息 | 订购本书 |
A Briefer History of Time [精装] | |||
A Briefer History of Time [精装] |
From Publishers Weekly
Starred Review. In the 17 years since the publication of A Brief History of Time, Dr. Hawking's bestselling exposition of physics, new data from particle physics and observational astronomy have shed light on efforts to find a Grand Unified Theory of Everything that Hawking and Mlodinow use to enhance and update their answers to basic questions about the universe: where it's going and how it began. Discussed at length are the mysterious dark matter and dark energy-both of which can only be observed by their gravitational effects and are believed to make up 90 percent of the universe. Another area of research that has exploded in the past 20 years is string theory. Hawking and Mlodinow provide one of the most lucid discussions of this complex topic ever written for a general audience. Readers will come away with an excellent understanding of the apparent contradictions and conundrums at the forefront of contemporary physics. Recognizing that much of their audience will also be science fiction buffs, they include a chapter on the possibility of time travel. "Don't bet on it," the authors advise. Throughout these discussions, the authors maintain the same wry, lively tone that made the original Brief History such a delight. They close with a discussion of where physics ends and philosophy begins, "Why does the universe exist at all?" They cannot provide the answer, but they do provide an immense amount of food for thought. Highly recommended.
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.
From Scientific American
Hawking's A Brief History of Time, published in 1988, was a surprise best-seller but a tough read for most people who tackled it. Hawking received many requests for a version that would make his discussion of deep questions about the universe more accessible. This book does that. Hawking and Mlodinow, a physicist turned science writer, proceed by small and careful steps from the early history of astronomy to today's efforts to construct a grand unified theory of the universe.
Editors of Scientific American
From Booklist
Theoretical physicist Hawking became an international celebrity thanks to his cosmological primer Brief History of Time (1988), one of the twentieth century's biggest best-sellers. According to Hawking, one copy of Brief History has been sold for every 750 people on earth (move over, Scarlett O'Hara!). While Brief History amassed that sales record, however, its subject matter didn't stand still, and some kind of overhaul, Hawking and Mlodinow say, came to seem necessary. They chose to revise in the direction of lesser length, more illustration, and greater accessibility as they updated to incorporate developments in string theory, new indications that a unified theory of physics--one that comprehends gravity as well as the three other physical forces--is possible, and new observations made by the Hubble Space Telescope and the Cosmic Background Explorer satellite. Few will be sorry for their choice, for Briefer History may be the clearest introduction to physics ever, and not just because it eschews equations, though that helps. Its clarity arises from firmly adhering to the concept announced by the second chapter's title, "Our Evolving Picture of the Universe." The book is the developmental portrait--a biography, if you will--of the idea of a dynamic cosmos, which took long to catch on: even Einstein, whose relativity theories "broke" the idea as nothing before had done, clung to a cosmological constant (which, Hawking and Mlodinow show, yet has its uses) in the face of quantum mechanical indeterminacy. Like the best biographies, it's an utterly engrossing read. Ray Olson
Copyright © American Library Association. All rights reserved
Review
"Hawking and Mlodinow provide one of the most lucid discussions of this complex topic ever written for a general audience.... [They] maintain the same wry, lively tone that made A Brief History of Time such a delight."-Publishers Weekly, starred review
From the Hardcover edition. --This text refers to the Kindle Edition edition.
Review
"Hawking and Mlodinow provide one of the most lucid discussions of this complex topic ever written for a general audience.... [They] maintain the same wry, lively tone that made A Brief History of Time such a delight."—Publishers Weekly, starred review
Praise for the original edition of A Brief History of Time
“[Hawking] can explain the complexities of cosmological physics with an engaging combination of clarity and wit. . . . His is a brain of extraordinary power.”—The New York Review of Books
“Lively and provocative . . . Mr. Hawking clearly possesses a natural teacher’s gifts—easy, good-natured humor and an ability to illustrate highly complex propositions with analogies plucked from daily life.”—The New York Times
“Even as he sits helpless in his wheelchair, his mind seems to soar ever more brilliantly across the vastness of space and time to unlock the secrets of the universe.”—Time
“This book marries a child’s wonder to a genius’s intellect. We journey into Hawking’s universe while marvelling at his mind.”—The Sunday Times (London)
“A masterful summary of what physicists now think the world is made of and how it got that way.”—The Wall Street Journal
“Charming and lucid . . . [a book of] sunny brilliance.”—The New Yorker
STEPHEN HAWKING is Lucasian Professor of Mathematics at the University of Cambridge; his other books for the general reader include the essay collection Black Holes and Baby Universes and The Universe in a Nutshell. Physicist LEONARD MLODINOW, his collaborator for this new edition, has taught at Cal Tech, written for Star Trek: The Next Generation, and is the author of Euclid's Window and Feynman's Rainbow and the co-author of the children's book series The Kids of Einstein Elementary. --This text refers to an out of print or unavailable edition of this title.
Chapter One
Thinking About the Universe
WE LIVE IN A STRANGE AND wonderful universe. Its age, size, violence, and beauty require extraordinary imagination to appreciate. The place we humans hold within this vast cosmos can seem pretty insignificant. And so we try to make sense of it all and to see how we fit in. Some decades ago, a well-known scientist (some say it was Bertrand Russell) gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant turtle." The scientist gave a superior smile before replying, "What is the turtle standing on?" "You're very clever, young man, very clever," said the old lady. "But it's turtles all the way down!"
Most people nowadays would find the picture of our universe as an infinite tower of turtles rather ridiculous. But why should we think we know better? Forget for a minute what you know-or think you know-about space. Then gaze upward at the night sky. What would you make of all those points of light? Are they tiny fires? It can be hard to imagine what they really are, for what they really are is far beyond our ordinary experience. If you are a regular stargazer, you have probably seen an elusive light hovering near the horizon at twilight. It is a planet, Mercury, but it is nothing like our own planet. A day on Mercury lasts for two-thirds of the planet's year. Its surface reaches temperatures of over 400 degrees Celsius when the sun is out, then falls to almost -200 degrees Celsius in the dead of night. Yet as different as Mercury is from our own planet, it is not nearly as hard to imagine as a typical star, which is a huge furnace that burns billions of pounds of matter each second and reaches temperatures of tens of millions of degrees at its core.
Another thing that is hard to imagine is how far away the planets and stars really are. The ancient Chinese built stone towers so they could have a closer look at the stars. It's natural to think the stars and planets are much closer than they really are-after all, in everyday life we have no experience of the huge distances of space. Those distances are so large that it doesn't even make sense to measure them in feet or miles, the way we measure most lengths. Instead we use the light-year, which is the distance light travels in a year. In one second, a beam of light will travel 186,000 miles, so a light-year is a very long distance. The nearest star, other than our sun, is called Proxima Centauri (also known as Alpha Centauri C), which is about four light-years away. That is so far that even with the fastest spaceship on the drawing boards today, a trip to it would take about ten thousand years.
Ancient people tried hard to understand the universe, but they hadn't yet developed our mathematics and science. Today we have powerful tools: mental tools such as mathematics and the scientific method, and technological tools like computers and telescopes. With the help of these tools, scientists have pieced together a lot of knowledge about space. But what do we really know about the universe, and how do we know it? Where did the universe come from? Where is it going? Did the universe have a beginning, and if so, what happened before then? What is the nature of time? Will it ever come to an end? Can we go backward in time? Recent breakthroughs in physics, made possible in part by new technology, suggest answers to some of these long-standing questions. Someday these answers may seem as obvious to us as the earth orbiting the sun-or perhaps as ridiculous as a tower of turtles. Only time (whatever that may be) will tell.
Chapter Two
Our Evolving Picture of the Universe
ALTHOUGH AS LATE AS THE TIME of Christopher Columbus it was common to find people who thought the earth was flat (and you can even find a few such people today), we can trace the roots of modern astronomy back to the ancient Greeks. Around 340 B.C., the Greek philosopher Aristotle wrote a book called On the Heavens. In that book, Aristotle made good arguments for believing that the earth was a sphere rather than flat like a plate.
One argument was based on eclipses of the moon. Aristotle realized that these eclipses were caused by the earth coming between the sun and the moon. When that happened, the earth would cast its shadow on the moon, causing the eclipse. Aristotle noticed that the earth's shadow was always round. This is what you would expect if the earth was a sphere, but not if it was a flat disk. If the earth were a flat disk, its shadow would be round only if the eclipse happened at a time when the sun was directly under the center of the disk. At other times the shadow would be elongated-in the shape of an ellipse (an ellipse is an elongated circle).
The Greeks had another argument for the earth being round. If the earth were flat, you would expect a ship approaching from the horizon to appear first as a tiny, featureless dot. Then, as it sailed closer, you would gradually be able to make out more detail, such as its sails and hull. But that is not what happens. When a ship appears on the horizon, the first things you see are the ship's sails. Only later do you see its hull. The fact that a ship's masts, rising high above the hull, are the first part of the ship to poke up over the horizon is evidence that the earth is a ball.
The Greeks also paid a lot of attention to the night sky. By Aristotle's time, people had for centuries been recording how the lights in the night sky moved. They noticed that although almost all of the thousands of lights they saw seemed to move together across the sky, five of them (not counting the moon) did not. They would sometimes wander off from a regular east-west path and then double back. These lights were named planets-the Greek word for "wanderer." The Greeks observed only five planets because five are all we can see with the naked eye: Mercury, Venus, Mars, Jupiter, and Saturn. Today we know why the planets take such unusual paths across the sky: though the stars hardly move at all in comparison to our solar system, the planets orbit the sun, so their motion in the night sky is much more complicated than the motion of the distant stars.
Aristotle thought that the earth was stationary and that the sun, the moon, the planets, and the stars moved in circular orbits about the earth. He believed this because he felt, for mystical reasons, that the earth was the center of the universe and that circular motion was the most perfect. In the second century a.d. another Greek, Ptolemy, turned this idea into a complete model of the heavens. Ptolemy was passionate about his studies. "When I follow at my pleasure the serried multitude of the stars in their circular course," he wrote, "my feet no longer touch the earth."
In Ptolemy's model, eight rotating spheres surrounded the earth. Each sphere was successively larger than the one before it, something like a Russian nesting doll. The earth was at the center of the spheres. What lay beyond the last sphere was never made very clear, but it certainly was not part of mankind's observable universe. Thus the outermost sphere was a kind of boundary, or container, for the universe. The stars occupied fixed positions on that sphere, so when it rotated, the stars stayed in the same positions relative to each other and rotated together, as a group, across the sky, just as we observe. The inner spheres carried the planets. These were not fixed to their respective spheres as the stars were, but moved upon their spheres in small circles called epicycles. As the planetary spheres rotated and the planets themselves moved upon their spheres, the paths they took relative to the earth were complex ones. In this way, Ptolemy was able to account for the fact that the observed paths of the planets were much more complicated than simple circles across the sky.
Ptolemy's model provided a fairly accurate system for predicting the positions of heavenly bodies in the sky. But in order to predict these positions correctly, Ptolemy had to make an assumption that the moon followed a path that sometimes brought it twice as close to the earth as at other times. And that meant that the moon ought sometimes to appear twice as big as at other times! Ptolemy recognized this flaw, but nevertheless his model was generally, although not universally, accepted. It was adopted by the Christian church as the picture of the universe that was in accordance with scripture, for it had the great advantage that it left lots of room outside the sphere of fixed stars for heaven and hell.
Another model, however, was proposed in 1514 by a Polish priest, Nicolaus Copernicus. (At first, perhaps for fear of being branded a heretic by his church, Copernicus circulated his model anonymously.) Copernicus had the revolutionary idea that not all heavenly bodies must orbit the earth. In fact, his idea was that the sun was stationary at the center of the solar system and that the earth and planets moved in circular orbits around the sun. Like Ptolemy's model, Copernicus's model worked well, but it did not perfectly match observation. Since it was much simpler than Ptolemy's model, though, one might have expected people to embrace it. Yet nearly a century passed before this idea was taken seriously. Then two astronomers-the German Johannes Kepler and the Italian Galileo Galilei-started publicly to support the Copernican theory.
In 1609, Galileo started observing the night sky with a telescope, which had just been invented. When he looked at the planet Jupiter, Galileo found that it was accompanied by several small satellites or moons that orbited around it. This implied that everything did not have to orbit directly around the ...
喜欢A Briefer History of Time [精装]请与您的朋友分享,由于版权原因,读书人网不提供图书下载服务