商家名称 | 信用等级 | 购买信息 | 订购本书 |
数学之美 [作者吴军] | |||
数学之美 [作者吴军] |
《浪潮之巅》作者、腾讯公司副总裁吴军最新力作《数学之美》由创新工场董事长兼首席执行官李开复倾力作序推荐。《数学之美》的创作源自点击超百万的谷歌黑板报专题博客,吴军老师应出版要求重新编写。
在《数学之美》中吴军老师带领你领略数学之美,架起从数学到应用的桥梁,教会你如何化繁为简,如何用数学解决工程问题,如何打破思维定式不断思考创新。
《数学之美》是献给每一位对自然、科学、生活有兴趣的朋友的礼物。
我大学的专业是计算数学,但读到吴军老师的“数学之美”系列文章,才发现马尔科夫过程、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生;才发现自然语言和信息处理这么有趣;才真正明白“数学是科学的皇后”这句名言。相信认真读完这本《数学之美》的朋友们,算法功力都会暴涨N倍,更重要的是发现了数学背后的无穷魅力,学会欣赏数学之美。
——蒋涛 CSDN&《程序员》创始人
最初看到《数学之美》,是谷歌黑板报上的连载文章。里面的公式并不是很多,但是很多看似颇为复杂的概念,吴军老师却能够如讲故事般娓娓道出,着实看出作者对这些问题有着深入且独到的见解,读后受益匪浅。这次有幸在《数学之美》出版之前拜读了初稿,欣喜看到新书在章节连贯和语言方面都较黑板报的连载文章有了较大的提高,相信每一个喜欢数学、乐意欣赏数学之美的读者,一定会觉得开卷有益。
——张磊 微软亚洲研究院主管研究员
我不做研究,也自觉没有做研究的底子。然而,数年前看到吴军老师的《数学之美》系列时仍然还是被深深地迷住了。正如作为一个十几年的科幻爱好者,深信在平凡的生活和工作之余应得闲仰望星空一样,作为生活在信息社会的个体,在上微博、搜Google、发邮件之余,关上显示器,能够透过《数学之美》这样的杰作,一窥纷繁涌动的数字世界背后的引擎——数学之美,实乃一件幸事。
——刘未鹏 《暗时间》作者
第一次接触吴军老师的“数学之美”系列,是在搜索bloom filter资料时,读了其中一篇后,就把其他的文章都读了,感触很多:首先,改变了观点:原以为在计算机系学到的数学基础在工作中一无是处,现在懂得:知识要落地,最重要的是理解知识的由来;其次,任何复杂的问题最终可以用简单的方式去解决,我们往往会陷入不断给问题增加难度的复杂解法,而忽视了简单直接有效的方法。
“数学之美”系列文章,整体和细节的度掌握得很好,通过具体的例子让读者学到的是思考问题的方式,同时留了很多问题给愿意钻研的人做进一步深入思考。BTW,“数学之美”系列,是我在技术领域介绍中读过的最好的文章之一,让人学会如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。
——岑文初/淘宝开放平台技术产品
我大学的专业是计算数学,但读到吴军老师的“数学之美”系列文章,才发现马尔科夫过程、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生;才发现自然语言和信息处理这么有趣;才真正明白“数学是科学的皇后”这句名言。相信认真读完这本《数学之美》的朋友们,算法功力都会暴涨N倍,更重要的是发现了数学背后的无穷魅力,学会欣赏数学之美。
——蒋涛/CSDN&《程序员》创始人
最初看到《数学之美》,是谷歌黑板报上的连载文章。里面的公式并不是很多,但是很多看似颇为复杂的概念,吴军老师却能够如讲故事般娓娓道出,着实看出作者对这些问题有着深入且独到的见解,读后受益匪浅。这次有幸在《数学之美》出版之前拜读了初稿,欣喜看到新书在章节连贯和语言方面都较黑板报的连载文章有了较大的提高,相信每一个喜欢数学、乐意欣赏数学之美的读者,一定会觉得开卷有益。——张磊/微软亚洲研究院主管研究员
我不做研究,也自觉没有做研究的底子。然而,数年前看到吴军老师的《数学之美》系列时仍然还是被深深地迷住了。正如作为一个十几年的科幻爱好者,深信在平凡的生活和工作之余应得闲仰望星空一样,作为生活在信息社会的个体,在上微博、搜Google、发邮件之余,关上显示器,能够透过《数学之美》这样的杰作,一窥纷繁涌动的数字世界背后的引擎——数学之美,实乃一件幸事。——刘未鹏/《暗时间》作者
第一次接触吴军老师的“数学之美”系列,是在搜索bloom filter资料时,读了其中一篇后,就把其他的文章都读了,感触很多:首先,改变了观点:原以为在计算机系学到的数学基础在工作中一无是处,现在懂得:知识要落地,最重要的是理解知识的由来;其次,任何复杂的问题最终可以用简单的方式去解决,我们往往会陷入不断给问题增加难度的复杂解法,而忽视了简单直接有效的方法。
“数学之美”系列文章,整体和细节的度掌握得很好,通过具体的例子让读者学到的是思考问题的方式,同时留了很多问题给愿意钻研的人做进一步深入思考。BTW, “数学之美”系列,是我在技术领域介绍中读过的最好的文章之一,让人学会如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。——岑文初/淘宝开放平台技术产品负责人
吴军,现任腾讯公司主管搜索、在线广告和云计算基础架构的副总裁,毕业于清华大学(本科、硕士)和美国约翰.霍普金斯大学(博士)。在清华大学和约翰.霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。他曾获得1995年全国人机语音智能接口会议的最佳论文奖和2000年Eurospeech的最佳论文奖。
吴军博士于2002年加入Google公司。在Google,他和Amit Singhal(美国工程院院士,世界著名搜索专家)、Matt Cutts(Google反作弊官方发言人)等三位同事一起开创了网络搜索反作弊的研究领域,并因此获得Google工程奖。2003年,他和Google全球架构的总工程师朱会灿博士等共同成立了中日韩文搜索部门。吴军博士是当前Google中日韩文搜索算法的主要设计者。在Google其间,他还领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了当时公司首席执行官埃里克.施密特和创始人谢尔盖?布林的高度评价。
吴军博士在国内外发表过数十篇论文,并获得和申请了十余项美国和国际专利。他的《浪潮之巅》一书深受业界的好评。他于2007年起,担任风险投资基金中国世纪基金的董事。2011年起当选为约翰?霍普金斯大学工学院董事会董事,并在该校的国际事务委员会担任顾问。他是国家重大专项“新一代搜索引擎和浏览器”项目的总负责人,从2012年起担任工信部的专家和顾问。
i 出版说明
v 序言1
ix 序言2
xi 前言
1 第1章 文字和语言 vs 数字和信息
文字和语言与数学,从产生起原本就有相通性,虽然它们的发展一度分道扬镳,但是最终还是能走到一起。
1 信息
2 文字和数字
3 文字和语言背后的数学
4 小结
15 第2章 自然语言处理 — 从规则到统计
人类对机器理解自然语言的认识走了一条大弯路。早期的研究集中采用基于规则的方法,虽然解决了一些简单的问题,但是无法从根本上将自然语言理解实用化。直到?? 多年后,人们开始尝试用基于统计的方法进行自然语言处理,才有了突破性进展和实用的产品。
1 机器智能
2 从规则到统计
3 小结
27 第3章 统计语言模型
统计语言模型是自然语言处理的基础,并且被广泛应用于机器翻译、语音识别、印刷体或手写体识别、拼写纠错、汉字输入和文献查询。
1 用数学的方法描述语言规律
2 延伸阅读:统计语言模型的工程诀窍
3 小结
41 第4章 谈谈中文分词
中文分词是中文信息处理的基础,它同样走过了一段弯路,目前依靠统计语言模型已经基本解决了这个问题。
1 中文分词方法的演变
2 延伸阅读:工程上的细节问题
3 小结
49 第5章 隐含马尔可夫模型
隐含马尔可夫模型最初应用于通信领域,继而推广到语音和语言处理中,成为连接自然语言处理和通信的桥梁。同时,隐含马尔可夫模型也是机器学习的主要工具之一。
1 通信模型
2 隐含马尔可夫模型
3 延伸阅读:隐含马尔可夫模型的训练
4 小结
59 第6章 信息的度量和作用
信息是可以量化度量的。信息熵不仅是对信息的量化度量,也是整个信息论的基础。它对于通信、数据压缩、自然语言处理都有很强的指导意义。
1 信息熵
2 信息的作用
3 延伸阅读:信息论在信息处理中的应用
4 小结
71 第7章 贾里尼克和现代语言处理
作为现代自然语言处理的奠基者,贾里尼克教授成功地将数学原理应用于自然语言处理领域中,他的一生富于传奇色彩。
1 早年生活
2 从水门事件到莫妮卡?莱温斯基
3 一位老人的奇迹
81 第8章 简单之美 — 布尔代数和搜索引擎的索引布尔代数虽然非常简单,却是计算机科学的基础,它不仅把逻辑和数学合二为一,而且给了我们一个全新的视角看待世界,开创了数字化时代。
1 布尔代数
2 索引
3 小结
89 第9章 图论和网络爬虫
互联网搜索引擎在建立索引前需要用一个程序自动地将所有的网页下载到服务器上,这个程序称为网络爬虫,它的编写是基于离散数学中图论的原理。
1 图论
2 网络爬虫
3 延伸阅读:图论的两点补充说明
4 小结
99 第10章 PageRank — Google的民主表决式网名网页排名技术是早期的杀手锏,它的出现使得网页搜索的质量上了一个大的台阶。它背后的原理是图论和线性代数的矩阵运算。
1 PageRank 算法的原理
2 延伸阅读:PageRank 的计算方法
3 小结
105 第11章 如何确定网页和查询的相关性
确定网页和查询的相关性是网页搜索的根本问题,其中确定查询中每个关键词的重要性有多高是关键。是目前通用的关键词重要性的度量,其背后的原理是信息论。
1 搜索关键词权重的科学度量TF-IDF
页排名技术
2 延伸阅读:TF-IDF 的信息论依据
3 小结
111 第12章 地图和本地搜索的最基本技术 — 有限划
地图和本地服务中要用到有限状态机和动态规划技术。这两项技术是机器智能和机器学习的工具,它们的应用非常广泛,还包括语音识别、拼写和语法纠错、拼音输入法、工业控制和生物的序列分析等。
1 地址分析和有限状态机
2 全球导航和动态规划
3 延伸阅读:有限状态传感器
4 小结
121 第13章 Google AK-47 的设计者 — 阿米特?士
在所有轻武器中最有名的是冲锋枪,因为它从不卡壳,不易损坏,可在任何环境下使用,可靠性好,杀伤力大并且操作简单。的产品就是按照上述原则设计的。
127 第14章 余弦定理和新闻的分类
计算机虽然读不懂新闻,却可以准确地对新闻进行分类。其数学工具是看似毫不相干的余弦定理。
1 新闻的特征向量
2 向量距离的度量
3 延伸阅读:计算向量余弦的技巧
4 小结
137 第15章 矩阵运算和文本处理中的两个分类问题
无论是词汇的聚类还是文本的分类,都可以通过线性代数中矩阵的奇异值分解来进行。这样一来,自然语言处理的问题就变成了一个数学问题。
1 文本和词汇的矩阵
2 延伸阅读:奇异值分解的方法和应用场景
3 小结
143 第16章 信息指纹及其应用
世间万物都有一个唯一标识的特征,信息也是如此。每一条信息都有它特定的指纹,通过这个指纹可以区别不同的信息。
1 信息指纹
2 信息指纹的用途
3 延伸阅读:信息指纹的重复性和相似哈希
4 小结