20、 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21、动能定理:外力所做的总功等于物体动能的变化(增量)。
公式: W合= DEk = Ek2 - Ek1 = 22、机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 DEp减 = DEk增
23、能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功。
DE = Q = f S相
24、功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25、 简谐振动: 回复力: F = -KX 加速度:a = - 单摆周期公式: T= 2 (与摆球质量、振幅无关)
(了解*)弹簧振子周期公式:T= 2 (与振子质量、弹簧劲度系数有关,与振幅无关)
26、 波长、波速、频率的关系: V = =l f (适用于一切波)
二、热学
1、热力学第一定律:DU = Q + W
符号法则:外界对物体做功,W为“+”。物体对外做功,W为“-”;
物体从外界吸热,Q为“+”;物体对外界放热,Q为“-”。
物体内能增量DU是取“+”;物体内能减少,DU取“-”。
2 、热力学第二定律:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化。
表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化。
表述三:第二类永动机是不可能制成的。
3、理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: 恒量
4、热力学温度:T = t + 273 单位:开(K)
(绝对零度是低温的极限,不可能达到)
三、电磁学
(一)直流电路
1、电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)
2、电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
3、电阻串联、并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R= 4、欧姆定律: (1)部分电路欧姆定律: U=IR (2)闭合电路欧姆定律:I =
路端电压: U = e -I r= IR
电源输出功率: = Iε-I r = 电源热功率:
电源效率: = = (3)电功和电功率:
电功:W=IUt 电热:Q= 电功率:P=IU
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=Iut > P=IU>
(4)电池组的串联:每节电池电动势为 `内阻为 ,n节电池串联时:
电动势:ε=n 内阻:r=n
(二)电场
1、电场的力的性质:
电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)
点电荷电场的场强: E = (注意场强的矢量性)
2、电场的能的性质:
电势差: U = (或 W = U q )
UAB = φA - φB
电场力做功与电势能变化的关系:DU = - W
3、匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)
4、带电粒子在电场中的运动:
① 加速: Uq = mv2
②偏转:运动分解: x= vo t ; vx = vo ; y = a t2 ; vy= a t
a =
(三)磁场
1、几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。
2、 磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B∥I,则力的大小为零)
3、磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B∥v,则力的大小为零)
4、带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动。即: qvB =
可得: r = , T = (确定圆心和半径是关键)
(四)电磁感应
1、感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律。
2、感应电动势的大小:① E = BLV (要求L垂直于B、V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)
(五)交变电流
1、交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
2 、正弦式交流的有效值:E = ;U = ; I =
(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
3 、电感和电容对交流的影响:
① 电感:通直流,阻交流;通低频,阻高频
② 电容:通交流,隔直流;通高频,阻低频
③ 电阻:交、直流都能通过,且都有阻碍
4、变压器原理(理想变压器):
①电压: ② 功率:P1 = P2
③ 电流:如果只有一个副线圈 : ;
若有多个副线圈:n1I1= n2I2 + n3I3
5、电磁振荡(LC回路)的周期:T = 2π 四、光学
1、光的折射定律:n =
介质的折射率:n = 2、全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角。 临界角C: sin C = 3、双缝干涉的规律:
①路程差ΔS = (n=0,1,2,3--) 明条纹
(2n+1) (n=0,1,2,3--) 暗条纹
② 相邻的两条明条纹(或暗条纹)间的距离:ΔX = 4、光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )
(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)
5、物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)
五、原子和原子核
1、氢原子的能级结构。
原子在两个能级间跃迁时发射(或吸收光子):
hυ = E m - E n
2、核能:核反应过程中放出的能量。
质能方程: E = m C2 核反应释放核能:ΔE = Δm C2
复习建议:
1、高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中。
力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等。
解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型。解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律)。后两种方法由于只要考虑初、末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的。
电磁学的重点是:①电场的性质;②电路的分析、设计与计算;③带电粒子在电场、磁场中的运动;④电磁感应现象中的力的问题、能量问题等等。
2、热学、光学、原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择、实验的形式出现。但绝对不能认为这部分内容分数少而不重视,正因为内容少、规律少,这部分的得分率应该是很高的。