首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 考研频道 > MBA/EMBA/MPA >

MBA数学辅导:多项式的因式分解(2)

2012-12-29 
多项式的因式分解

  首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

  平方差公式

  (a+b)(a-b)=a^2-b^2

  完全平方公式

  (a+b)^2=a^2+2ab+b^;2   (a-b)^2=a^2-2ab+b^2

  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

  立方和(差)立方公式

  两数差乘以它们的平方和与它们的积的和等于两数的立方差。

  即a^3-b^3=(a-b)(a^2+ab+b^2)

  证明如下: a^3-b^3=a^3-3a^2b+3ab^2-b^3

  所以a^3-b^3=(a-b)a^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)   =(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)

  十字相公式

  十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。   (x+a)(x+b)=x^2+(a+b)x+ab

热点排行