首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 考研频道 > 考研数学 >

2013年考研数学大纲解读:重难点解析(1)

2012-09-17 
纵观2013年考研数学大纲,从数一到数三,分量最重的都是高等数学,它在数一、数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。

  通过对2013考研数学考纲以及历年真题的分析,梳理、总结了考研数学的重难点。

  高等数学

  一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。

  二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。

  一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。

  多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。

  三、积分学部分:

  一元函数积分学的一个重点是不定积分与定积分的计算。这个对于有些同学来说可能不难,但是要想用简便的方法解答还是需要多花点时间学习的。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,这种方法相信多数同学都会,但是如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,同学们应牢记相关公式,通过多练掌握解题技巧。对于定积分在物理上的应用(数一数二有要求),如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。

  多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。三重积分、曲线和曲面积分属于数一单独考查的内容,主要是掌握三重积分的计算、格林公式和高斯公式以及曲线积分与路径无关的条件。对于数一考生来说,这部分是重点,也是难点所在。散度、旋度同样是数一考生单独考查内容,但是不是重点,会进行简单计算即可。

  四、向量代数与空间解析几何部分:

  这部分内容只对考数一的同学要求,但不是重点。从近些年考研真题来看,考查很少,偶尔以选择、填空的形式出现。

  五、无穷级数部分:

  这部分内容对数二的考生不作要求。数一、三的考生需要掌握两个重点:一是常数项级数性质问题,尤其是如何判断级数的敛散性;二是幂级数。考生要熟练掌握幂级数的收敛区间、收敛半径、和函数以及幂级数的展开问题。

  六、微分方程与差分方程部分:

  差分方程只对数三考生要求,但不是重点。这里有两个重点:一阶线性微分方程;二阶常系数齐次/非齐次线性微分方程。

  线性代数:

  总体来说,这部分内容相对容易,考试的时候出题的套路比较固定。但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。这就要求同学们在复习时多注意一下基本概念。

  依据新大纲以及历年真题来看,线性代数的重难点如下:

  一、行列式

  行列式的性质、行列式按行(列)展开定理是重点,但不是难点。在行列式的计算题目中,尤其是抽象行列式的计算,常用到矩阵的相关知识,应提高对知识的综合运用能力。

  二、矩阵

  逆矩阵、矩阵的初等变换、矩阵的秩是重点。逆矩阵的计算,以及矩阵是否可逆的判定属于常考内容。矩阵的初等变换常以选择题形式出现,如2012考研。

  三、向量

  向量组的线性相关与线性无关是一个重点,要求掌握向量组线性相关、线性无关的性质及判别法,常以选择题、解答题形式出现。正交矩阵也可以作为一个重点掌握。考查最多的是施密特正交化法。

  四、线性方程组

  方程组解的讨论、待定参数的解的讨论问题是重点考查内容。掌握用初等行变换求解线性方程组的方法。

  五、矩阵的特征值和特征向量

  矩阵的特征值、特征向量的计算以及矩阵的对角化是重点。对于抽象矩阵,要会用定义求解;对于具体矩阵,一般通过特征方程 求特征值,再利用 求特征向量。相似对角化要掌握对角化的条件,注意一般矩阵与实对称矩阵在对角化方面的联系与区别。

  六、二次型

  这部分需要掌握两点:一是用正交变换和配方法化二次型为标准形,重点是正交变换法。需要注意的是对于有多重特征值时,解方程组所得的对应的特征向量可能不一定正交,这时要正交规范化。二是二次型的正定性,掌握判定正定性的方法。

热点排行