首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 图书频道 > 计算机与网络 > 程序设计 >

这就是搜索引擎:核心技术详解(张俊林著)

2012-11-23 
本书的讲述由浅入深,从介绍Android平台的基本组件到带领读者开发大型应用程序,结构清晰、语言简洁,非常适合初学者和进阶开发者阅读参考。
商家名称 信用等级 购买信息 订购本书
这就是搜索引擎:核心技术详解(张俊林著) 去商家看看
这就是搜索引擎:核心技术详解(张俊林著) 去商家看看

这就是搜索引擎:核心技术详解 [平装]

编辑推荐

《这就是搜索引擎:核心技术详解》适合三类人:对搜索引擎核心算法有兴趣的技术人员、对云计算与云存储有兴趣的技术人员、从事搜索引擎优化的网络营销人员及中小网站站长。

目录

第1章 搜索引擎及其技术架构 1
1.1 搜索引擎为何重要 1
1.1.1 互联网的发展 1
1.1.2 商业搜索引擎公司的发展 3
1.1.3 搜索引擎的重要地位 3
1.2 搜索引擎技术发展史 4
1.2.1 史前时代:分类目录的一代 4
1.2.2 第一代:文本检索的一代 5
1.2.3 第二代:链接分析的一代 5
1.2.4 第三代:用户中心的一代 5
1.3 搜索引擎的3个目标 6
1.4 搜索引擎的3个核心问题 7
1.4.1 3个核心问题 7
1.4.2 与技术发展的关系 8
1.5 搜索引擎的技术架构 9

第2章 网络爬虫 12
2.1 通用爬虫框架 12
2.2 优秀爬虫的特性 15
2.3 爬虫质量的评价标准 18
2.4 抓取策略 19
2.4.1 宽度优先遍历策略(Breath First) 20
2.4.2 非完全PageRank策略(Partial PageRank) 21
2.4.3 OCIP策略(Online Page Importance Computation) 23
2.4.4 大站优先策略(Larger Sites First) 23
2.5 网页更新策略 23
2.5.1 历史参考策略 24
2.5.2 用户体验策略 24
2.5.3 聚类抽样策略 24
2.6 暗网抓取(Deep Web Crawling) 26
2.6.1 查询组合问题 27
2.6.2 文本框填写问题 29
2.7 分布式爬虫 30
2.7.1 主从式分布爬虫(Master-Slave) 31
2.7.2 对等式分布爬虫(Peer to Peer) 31
本章提要 34
本章参考文献 34

第3章 搜索引擎索引 36
3.1 索引基础 36
3.1.1 单词-文档矩阵 37
3.1.2 倒排索引基本概念 37
3.1.3 倒排索引简单实例 39
3.2 单词词典 42
3.2.1 哈希加链表 42
3.2.2 树形结构 43
3.3 倒排列表(Posting List) 44
3.4 建立索引 45
3.4.1 两遍文档遍历法(2-Pass In-Memory Inversion) 45
3.4.2 排序法(Sort-based Inversion) 46
3.4.3 归并法(Merge-based Inversion) 49
3.5 动态索引 50
3.6 索引更新策略 51
3.6.1 完全重建策略(Complete Re-Build) 51
3.6.2 再合并策略(Re-Merge) 52
3.6.3 原地更新策略(In-Place) 55
3.6.4 混合策略(Hybrid) 57
3.7 查询处理 57
3.7.1 一次一文档(Doc at a Time) 58
3.7.2 一次一单词(Term at a Time) 59
3.7.3 跳跃指针(Skip Pointers) 60
3.8 多字段索引 62
3.8.1 多索引方式 62
3.8.2 倒排列表方式 63
3.8.3 扩展列表方式(Extent List) 64
3.9 短语查询 64
3.9.1 位置信息索引(Position Index) 65
3.9.2 双词索引(Nextword Index) 66
3.9.3 短语索引(Phrase Index) 67
3.9.4 混合方法 67
3.10 分布式索引(Parallel Indexing) 68
3.10.1 按文档划分(Document Partitioning) 69
3.10.2 按单词划分(Term Partitioning) 70
3.10.3 两种方案的比较 72
本章提要 73
本章参考文献 73

第4章 索引压缩 76
4.1 词典压缩 76
4.2 倒排列表压缩算法 78
4.2.1 评价索引压缩算法的指标 79
4.2.2 一元编码与二进制编码 79
4.2.3 Elias Gamma算法与Elias Delta算法 81
4.2.4 Golomb算法与Rice算法 81
4.2.5 变长字节算法(Variable Byte) 83
4.2.6 SimpleX 系列算法 84
4.2.7 PForDelta算法 86
4.3 文档编号重排序(DocID Reordering) 89
4.4 静态索引裁剪(Static Index Pruning) 93
4.4.1 以单词为中心的索引裁剪 94
4.4.2 以文档为中心的索引裁剪 96
本章提要 97
本章参考文献 97

第5章 检索模型与搜索排序 99
5.1 布尔模型(Boolean Model) 101
5.2 向量空间模型(Vector Space Model) 102
5.2.1 文档表示 102
5.2.2 相似性计算 104
5.2.3 特征权重计算 106
5.3 概率检索模型 108
5.3.1 概率排序原理 108
5.3.2 二元独立模型(Binary Independent Model) 110
5.3.3 BM25模型 113
5.3.4 BM25F模型 115
5.4 语言模型方法 116
5.5 机器学习排序(Learning to Rank) 119
5.5.1 机器学习排序的基本思路 120
5.5.2 单文档方法(PointWise Approach) 121
5.5.3 文档对方法(PairWise Approach) 122
5.5.4 文档列表方法(ListWise Approach) 123
5.6 检索质量评价标准 125
5.6.1 精确率与召回率 126
5.6.2 P@10指标 127
5.6.3 MAP指标(Mean Average Precision) 128
本章提要 129
本章参考文献 129

第6章 链接分析 131
6.1 Web图 131
6.2 两个概念模型及算法之间的关系 133
6.2.1 随机游走模型(Random Surfer Model) 133
6.2.2 子集传播模型 135
6.2.3 链接分析算法之间的关系 136
6.3 PageRank算法 137
6.3.1 从入链数量到PageRank 137
6.3.2 PageRank计算 138
6.3.3 链接陷阱(Link Sink)与远程跳转(Teleporting) 139
6.4 HITS算法(Hypertext Induced Topic Selection) 140
6.4.1 Hub页面与Authority页面 140
6.4.2 相互增强关系 141
6.4.3 HITS算法 142
6.4.4 HITS算法存在的问题 144
6.4.5 HITS算法与PageRank算法比较 145
6.5 SALSA算法 146
6.5.1 确定计算对象集合 146
6.5.2 链接关系传播 148
6.5.3 Authority权值计算 150
6.6 主题敏感PageRank(Topic Sensitive PageRank) 152
6.6.1 主题敏感PageRank与PageRank的差异 152
6.6.2 主题敏感PageRank计算流程 153
6.6.3 利用主题敏感PageRank构造个性化搜索 156
6.7 Hilltop算法 156
6.7.1 Hilltop算法的一些基本定义 157
6.7.2 Hilltop算法 158
6.8 其他改进算法 162
6.8.1 智能游走模型(Intelligent Surfer Model) 162
6.8.2 偏置游走模型(Biased Surfer Model) 163
6.8.3 PHITS算法(Probability Analogy of HITS) 163
6.8.4 BFS算法(Backward Forward Step) 163
本章提要 164
本章参考文献 164

第7章 云存储与云计算 166
7.1 云存储与云计算概述 167
7.1.1 基本假设 167
7.1.2 理论基础 168
7.1.3 数据模型 170
7.1.4 基本问题 170
7.1.5 Google的云存储与云计算架构 171
7.2 Google文件系统(GFS) 173
7.2.1 GFS设计原则 174
7.2.2 GFS整体架构 174
7.2.3 GFS主控服务器 176
7.2.4 系统交互行为 178
7.3 Chubby锁服务 179
7.4 BigTable 181
7.4.1 BigTable的数据模型 181
7.4.2 BigTable整体结构 183
7.4.3 BigTable的管理数据 184
7.4.4 主控服务器(Master Server) 186
7.4.5 子表服务器(Tablet Server) 187
7.5 Megastore系统 191
7.5.1 实体群组切分 192
7.5.2 数据模型 193
7.5.3 数据读写与备份 195
7.6 Map/Reduce云计算模型 195
7.6.1 计算模型 196
7.6.2 整体逻辑流程 197
7.6.3 应用示例 198
7.7 咖啡因系统——Percolator 199
7.7.1 事务支持 200
7.7.2 观察/通知体系结构 202
7.8 Pregel图计算模型 203
7.9 Dynomo云存储系统 206
7.9.1 数据划分算法(Partitioning Algorithm) 207
7.9.2 数据备份(Replication) 208
7.9.3 数据读写 208
7.9.4 数据版本控制 209
7.10 PNUTS云存储系统 210
7.10.1 PNUTS整体架构 211
7.10.2 存储单元 211
7.10.3 子表控制器与数据路由器 213
7.10.4 雅虎消息代理 213
7.10.5 数据一致性 214
7.11 HayStack存储系统 215
7.11.1 HayStack整体架构 216
7.11.2 目录服务 218
7.11.3 HayStack缓存 219
7.11.4 HayStack存储系统 219
本章提要 222
本章参考文献 222

第8章 网页反作弊 224
8.1 内容作弊 224
8.1.1 常见内容作弊手段 225
8.1.2 内容农场(Content Farm) 226
8.2 链接作弊 227
8.3 页面隐藏作弊 230
8.4 Web 2.0作弊方法 231
8.5 反作弊技术的整体思路 232
8.5.1 信任传播模型 233
8.5.2 不信任传播模型 234
8.5.3 异常发现模型 234
8.6 通用链接反作弊方法 236
8.6.1 TrustRank算法 237
8.6.2 BadRank算法 238
8.6.3 SpamRank 239
8.7 专用链接反作弊技术 240
8.7.1 识别链接农场 240
8.7.2 识别Google轰炸 241
8.8 识别内容作弊 241
8.9 反隐藏作弊 241
8.9.1 识别页面隐藏 241
8.9.2 识别网页重定向 242
8.10 搜索引擎反作弊综合框架 242
本章提要 244
本章参考文献 244

第9章 用户查询意图分析 246
9.1 搜索行为及其意图 246
9.1.1 用户搜索行为 246
9.1.2 用户搜索意图分类 248
9.2 搜索日志挖掘 250
9.2.1 查询会话(Query Session) 250
9.2.2 点击图(Click Graph) 251
9.2.3 查询图(Query Graph) 252
9.3 相关搜索 253
9.3.1 基于查询会话的方法 253
9.3.2 基于点击图的方法 254
9.4 查询纠错 255
9.4.1 编辑距离(Edit Distance) 256
9.4.2 噪声信道模型(Noise Channel Model) 257
本章提要 257
本章参考文献 258

第10章 网页去重 259
10.1 通用去重算法框架 261
10.2 Shingling算法 262
10.3 I-Match算法 265
10.4 SimHash算法 268
10.4.1 文档指纹计算 269
10.4.2 相似文档查找 270
10.5 SpotSig算法 272
10.5.1 特征抽取 272
10.5.2 相似文档查找 273
本章提要 274
本章参考文献 274

第11章 搜索引擎缓存机制 276
11.1 搜索引擎缓存系统架构 277
11.2 缓存对象 279
11.3 缓存结构 281
11.4 缓存淘汰策略(Evict Policy) 283
11.4.1 动态策略 284
11.4.2 混合策略 284
11.5 缓存更新策略(Refresh Policy) 285
本章提要 286
本章参考文献 287

第12章 搜索引擎发展趋势 288
12.1 个性化搜索 288
12.2 社会化搜索 290
12.3 实时搜索 291
12.4 移动搜索 293
12.5 地理位置感知搜索 294
12.6 跨语言搜索 296
12.7 多媒体搜索 298
12.8 情境搜索 299

文摘

版权页:



插图:



1.1.2 商业搜索引擎
公司的发展搜索引擎的产生和发展,与互联网的蓬勃发展这个大背景是密不可分的。在互联网发展初期,一般互联网用户最常用的应用仅是电子邮箱,而随着WWW相关协议和产品的逐步成熟,网站拥有者制作和发布网页信息的成本急剧下降。而PC电脑及图形化浏览器的普及,使得普通用户浏览信息成本急剧降低。再加上网络基础设施的大量投入,使得带宽等不断加大。这几个因素交互作用,导致互联网上的信息产生爆炸性增长。在信息量快速增长的情况下,如何能够找到满足用户需求的网页内容就日益成为越来越重要的问题。信息增长速度越快,用户需求越迫切。大的搜索引擎公司就是在这个用户需求背景下,从建立到逐步壮大,乃至发展到今天搜索引擎成为最重要的互联网的应用。
1995年是搜索引擎商业公司发展的重要起点,其对应的背景是:互联网上的Web站点数量首次超过100万,此时普通用户已经无法依赖手工浏览的方式来获得自己想要的信息。在这一年产生了很多风云一时的早期搜索引擎公司。Yahoo、InfoSeek、FastSearch、AltaVista、Excite等曾经非常著名的搜索引擎公司都创建于1995年。Yahoo依靠人工编辑导航目录,将互联网上重要的站点分门别类整理好,满足了人们查找重要网站的需求,可谓应时而生,从此快速成长为最著名的搜索和门户网站。其他搜索引擎公司则提供基于传统信息检索系统的搜索服务,也都获得了快速成长。
随着互联网的进一步快速发展,信息的爆炸性增长,已有的搜索引擎服务提供商所提供的搜索服务质量并无大的改善,逐渐不能满足用户的需求。Google于1998年成立,以PageRank链接分析等新技术大幅度提高了搜索质量,之后高速发展并抢占了绝大多数搜索引擎市场,成长为目前最重要的互联网公司之一。百度则依靠本地化优势,成为中国国内最强势的搜索引擎服务提供商。尽管2000年后陆续有大小公司进入搜索市场,但是无论从技术角度还是市场份额角度,搜索市场格局并未发生太大变化。

编辑推荐:

药房里买得到的传世名方(佟彤著)

西尔斯母乳喂养全书:从出生到断奶关于母乳你

水工钢筋混凝土结构学(第4版)(河海大学)

水利工程施工(第5版)(钟登华著)

种多肉、玩多肉一次搞定(花草游戏编辑部)

原始丛林大冒险(洪在彻著)

更多图书资讯可访问读书人图书频道:http://www.reAder8.cn/book/

热点排行