二、概率论与数理统计
在数学的三门科目中,同时它还是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其主要知识点有以下几点:
1.随机事件和概率:包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。
2.随机变量及其概率分布:包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。
3.二维随机变量及其概率分布:包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量 的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。
4.随机变量的数字特征:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。
5.大数定律和中心极限定理,以及切比雪夫不等式。
6.数理统计与参数估计。
三、线性代数
一般而言,在数学三个科目中,很多同学会认为线性代数比较简单。事实上,线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。线性代数的重要知识点主要有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。