商家名称 | 信用等级 | 购买信息 | 订购本书 |
Probabilistic Graphical Models: Principles and Techniques | |||
Probabilistic Graphical Models: Principles and Techniques |
"This landmark book provides a very extensive coverage of the field, ranging from basic representational issues to the latest techniques for approximate inference and learning. As such, it is likely to become a definitive reference for all those who work in this area. Detailed worked examples and case studies also make the book accessible to students."--Kevin Murphy, Department of Computer Science, University of British Columbia
作者简介Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.
网友对Probabilistic Graphical Models: Principles and Techniques的评论
书很好,价格贵,不过值得留一本
This is a great book on the topic, regardless of whether you are new to probabilistic graphical models or have some familiarity with them but would like a deeper exploration of theory and/or implementation. I have read a number of books and papers on this topic (including Barber's and Bishop's) and I much prefer this one. Dr. Koller's style of writing is to start with simple theory and examples and walk the reader up to the full theory, while adding reminders of relevant topics covered elsewhere. She accomplishes this without condescending to or belittling the reader, or being overly verbose; each of the 1200 pages is concise and well edited. There is an OpenClassroom course that accompanies the book (CS 228), which I highly recommend viewing, as it contains that same style of teaching but in a different format and often with a somewhat different approach.
This popular book makes a noble attempt at unifying the many different types of probabilistic models used in artificial intelligence. It seems like a good reference manual for people who are already familiar with the fundamental concepts of commonly used probabilistic graphical models. However, it contains a lot of rambling and jumping between concepts that will quickly confuse a reader who is not already familiar with the subject. While the book appears to be systematic in introducing the subject with mathematical rigor (definitions and theorems), it actually skips a lot of fundamental concepts and leaves a lot of important proofs as exercises. I would recommend that a beginner in the subject start with another book like that by Jordan and Bishop, while keeping this book around as a reference manual or bank of practice problems for further study. The Coursera class on this subject is much easier to follow than this book is.
I bought this book to use for the Coursera course on PGM taught by the author. It was essential to being able to follow the course. I would not say that it is an easy book to pick up and learn from. It was a good reference to use to get more details on the topics covered in the lectures.
If you want a very close look under the hood of Bayesian Networks, I can highly recommend Probabilistic Graphical Models. It's extremely comprehensive (1,200+ pages), well structured and clearly written. Theory, computation and application - including how to think about causation - are all covered in depth. Not light reading and not suited for those with limited stats background, but all in all one of the best textbooks on analytics topics I've ever read. Very impressive.
This was the book that really got me into AI research. Clearly written and detailed. I especially like that variational inference is taught using discrete variables so you don't need to learn both variational inference and calculus of variations at the same time.
喜欢Probabilistic Graphical Models: Principles and Techniques请与您的朋友分享,由于版权原因,读书人网不提供图书下载服务