商家名称 | 信用等级 | 购买信息 | 订购本书 |
Thomas' Calculus [平装] | |||
Thomas' Calculus [平装] |
Joel Hass received his PhD from the University of California--Berkeley. He is currently a professor of mathematics at the University of California--Davis. He has coauthored six widely used calculus texts as well as two calculus study guides. He is currently on the editorial board of Geometriae Dedicata and Media-Enhanced Mathematics. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass's current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking. Maurice D. Weir holds a DA and MS from Carnegie-Mellon University and received his BS at Whitman College. He is a Professor Emeritus of the Department of Applied Mathematics at the Naval Postgraduate School in Monterey, California. Weir enjoys teaching Mathematical Modeling and Differential Equations. His current areas of research include modeling and simulation as well as mathematics education. Weir has been awarded the Outstanding Civilian Service Medal, the Superior Civilian Service Award, and the Schieffelin Award for Excellence in Teaching. He has coauthored eight books, including the University Calculus series and the twelfth edition of Thomas' Calculus. George B. Thomas, Jr. (late) of the Massachusetts Institute of Technology, was a professor of mathematics for thirty-eight years; he served as the executive officer of the department for ten years and as graduate registration officer for five years. Thomas held a spot on the board of governors of the Mathematical Association of America and on the executive committee of the mathematics division of the American Society for Engineering Education. His book, Calculus and Analytic Geometry, was first published in 1951 and has since gone through multiple revisions. The text is now in its twelfth edition and continues to guide students through their calculus courses. He also co-authored monographs on mathematics, including the text Probability and Statistics.
1. Functions 1.1 Functions and Their Graphs 1.2 Combining Functions; Shifting and Scaling Graphs 1.3 Trigonometric Functions 1.4 Graphing with Calculators and Computers 1.5 Exponential Functions 1.6 Inverse Functions and Logarithms 2. Limits and Derivatives 2.1 Rates of Change and Tangents to Curves 2.2 Limit of a Function and Limit Laws 2.3 Precise Definition of a Limit 2.4 One-Sided Limits 2.5 Continuity 2.6 Limits Involving Infinity, Asymptotes of Graphs 3. Differentiation 3.1 Tangents and the Derivative at a Point 3.2 The Derivative as a Function 3.3 Rules for Polynomials, Exponentials, Products, and Quotients 3.4 The Derivative as a Rate of Change 3.5 Derivatives of Trigonometric Functions 3.6 The Chain Rule 3.7 Implicit Differentiation 3.8 Derivatives of Inverse Functions and Logarithms 3.9 Inverse Trigonometric Functions 3.10 Related Rates 3.11 Linearization and Differentials 4. Applications of Derivatives 4.1 Extreme Values of Functions 4.2 The Mean Value Theorem 4.3 Monotonic Functions and the First Derivative Test 4.4 Concavity and Curve Sketching 4.5 Indeterminate Forms and L'Hopital's Rule 4.6 Applied Optimization 4.7 Newton's Method 4.8 Antiderivatives 5. Integration 5.1 Area and Estimating with Finite Sums 5.2 Sigma Notation and Limits of Finite Sums 5.3 The Definite Integral 5.4 The Fundamental Theorem of Calculus 5.5 Indefinite Integrals and the Substitution Rule 5.6 Substitution and Area Between Curves 6. Applications of Definite Integrals 6.1 Volumes Using Cross-Sections 6.2 Volumes Using Cylindrical Shells 6.3 Arc Length 6.4 Areas of Surfaces of Revolution 6.5 Work and Fluid Forces 6.6 Moments and Centers of Mass 7. Integrals and Transcendental Functions 7.1 The Logarithm Defined as an Integral 7.2 Exponential Change and Separable Differential Equations 7.3 Hyperbolic Functions 7.4 Relative Rates of Growth 8. Techniques of Integration 8.1 Integration by Parts 8.2 Trigonometric Integrals 8.3 Trigonometric Substitutions 8.4 Integration of Rational Functions by Partial Fractions 8.5 Integral Tables and Computer Algebra Systems 8.6 Numerical Integration 8.7 Improper Integrals 9. First-Order Differential Equations 9.1 Solutions, Slope Fields, and Euler's Method 9.2 First-Order Linear Equations 9.3 Applications 9.4 Graphical Solutions of Autonomous Equations 9.5 Systems of Equations and Phase Planes 10. Infinite Sequences and Series 10.1 Sequences 10.2 Infinite Series 10.3 The Integral Test 10.4 Comparison Tests 10.5 The Ratio and Root Tests 10.6 Alternating Series, Absolute and Conditional Convergence 10.7 Power Series 10.8 Taylor and Maclaurin Series 10.9 Convergence of Taylor Series 10.10 The Binomial Series and Applications of Taylor Series 11. Parametric Equations and Polar Coordinates 11.1 Parametrizations of Plane Curves 11.2 Calculus with Parametric Curves 11.3 Polar Coordinates 11.4 Graphing in Polar Coordinates 11.5 Areas and Lengths in Polar Coordinates 11.6 Conic Sections 11.7 Conics in Polar Coordinates 12. Vectors and the Geometry of Space 12.1 Three-Dimensional Coordinate Systems 12.2 Vectors 12.3 The Dot Product 12.4 The Cross Product 12.5 Lines and Planes in Space 12.6 Cylinders and Quadric Surfaces 13. Vector-Valued Functions and Motion in Space 13.1 Curves in Space and Their Tangents 13.2 Integrals of Vector Functions; Projectile Motion 13.3 Arc Length in Space 13.4 Curvature and Normal Vectors of a Curve 13.5 Tangential and Normal Components of Acceleration 13.6 Velocity and Acceleration in Polar Coordinates 14. Partial Derivatives 14.1 Functions of Several Variables 14.2 Limits and Continuity in Higher Dimensions 14.3 Partial Derivatives 14.4 The Chain Rule 14.5 Directional Derivatives and Gradient Vectors 14.6 Tangent Planes and Differentials 14.7 Extreme Values and Saddle Points 14.8 Lagrange Multipliers 14.9 Taylor's Formula for Two Variables 14.10 Partial Derivatives with Constrained Variables 15. Multiple Integrals 15.1 Double and Iterated Integrals over Rectangles 15.2 Double Integrals over General Regions 15.3 Area by Double Integration 15.4 Double Integrals in Polar Form 15.5 Triple Integrals in Rectangular Coordinates 15.6 Moments and Centers of Mass 15.7 Triple Integrals in Cylindrical and Spherical Coordinates 15.8 Substitutions in Multiple Integrals 16. Integration in Vector Fields 16.1 Line Integrals 16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 16.3 Path Independence, Conservative Fields, and Potential Functions 16.4 Green's Theorem in the Plane 16.5 Surfaces and Area 16.6 Surface Integrals 16.7 Stokes' Theorem 16.8 The Divergence Theorem and a Unified Theory 17. Second-Order Differential Equations (online) 17.1 Second-Order Linear Equations 17.2 Nonhomogeneous Linear Equations 17.3 Applications 17.4 Euler Equations 17.5 Power-Series Solutions Appendices 1. Real Numbers and the Real Line 2. Mathematical Induction 3. Lines, Circles, and Parabolas 4. Proofs of Limit Theorems 5. Commonly Occurring Limits 6. Theory of the Real Numbers 7. Complex Numbers 8. The Distributive Law for Vector Cross Products 9. The Mixed Derivative Theorem and the Increment Theorem
喜欢Thomas' Calculus [平装]请与您的朋友分享,由于版权原因,读书人网不提供图书下载服务