Java 中的悲观锁和乐观锁的实现
String?hqlStr? = ? " from?TUser?as?user?where?user.name=’Erica’ " ;?
2 Query?query? = ?session.createQuery(hqlStr);?
3 query.setLockMode( " user " ,LockMode.UPGRADE);? // 加锁?
4 List?userList? = ?query.list(); // 执行查询,
获取数据 query.setLockMode 对查询语句中特定别名所对应的记录进行加锁(我们为 TUser类指定了一个别名“user”),这里也就是对返回的所有user记录进行加锁。 观察运行期Hibernate生成的SQL语句:?
1 select?tuser0_.id?as?id,?tuser0_.name?as?name,?tuser0_.group_id?as?group_id,?tuser0_.user_type?as?user_type,?tuser0_.sex?as?sex?from?t_user?tuser0_?where?(tuser0_.name = ’Erica’?)? for ?update?这里Hibernate通过使用数据库的for update子句实现了悲观锁机制。 Hibernate的加锁模式有:
? LockMode.NONE : 无锁机制。
? LockMode.WRITE :Hibernate在Insert和Update记录的时候会自动 获取。
? LockMode.READ : Hibernate在读取记录的时候会自动获取。
以上这三种锁机制一般由Hibernate内部使用,如Hibernate为了保证Update 过程中对象不会被外界修改,会在save方法实现中自动为目标对象加上WRITE锁。
?
? LockMode.UPGRADE :利用数据库的for update子句加锁。
? LockMode. UPGRADE_NOWAIT :Oracle的特定实现,利用Oracle的for update nowait子句实现加锁。
上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现:
Criteria.setLockMode
Query.setLockMode
Session.lock
注意,只有在查询开始之前(也就是Hiberate 生成SQL 之前)设定加锁,才会 真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含for update 子句的Select SQL加载进来,所谓数据库加锁也就无从谈起。
二 :乐观锁(Optimistic Locking)
相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依 靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库 性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。 如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进 行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几 百上千个并发,这样的情况将导致怎样的后果。 乐观锁机制在一定程度上解决了这个问题。乐观锁 大多是基于数据版本 (Version)记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于 数据库表的版本解决方案中,一般是通过为数据库表增加一个“version”字段来 实现。 读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提 交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据 版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。 对于上面修改用户帐户信息的例子而言,假设 :
数据库中帐户信息表中有一个 version字段,当前值为1;而当前帐户余额字段(balance)为$100。
1 :操作员A 此时将其读出(version=1),并从其帐户余额中扣除$50 ($100-$50)。
2?:?在操作员A操作的过程中,操作员B也读入此用户信息(version=1),并 从其帐户余额中扣除$20($100-$20)。
3: 操作员A完成了修改工作,将数据版本号加一(version=2),连同帐户扣 除后余额(balance=$50),提交至数据库更新,此时由于提交数据版本大 于数据库记录当前版本,数据被更新,数据库记录version更新为2。
4: 操作员B完成了操作,也将版本号加一(version=2)试图向数据库提交数 据(balance=$80),但此时比对数据库记录版本时发现,操作员B提交的 数据版本号为2,数据库记录当前版本也为2,不满足“提交版本必须大于记 录当前版本才能执行更新“的乐观锁策略,因此,操作员B 的提交被驳回。 这样,就避免了操作员B 用基于version=1 的旧数据修改的结果覆盖操作 员A的操作结果的可能。
从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员A 和操作员B操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系 统整体性能表现。 需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局 限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户 余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在 系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如 将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途 径,而不是将数据库表直接对外公开)。 Hibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外部系统对数 据库的更新操作,利用Hibernate提供的透明化乐观锁实现,将大大提升我们的 生产力。 Hibernate中可以通过class描述符的optimistic-lock属性结合version 描述符指定。
现在,我们为之前示例中的TUser加上乐观锁机制。
?
1. 首先为TUser的class描述符添加optimistic-lock属性:
optimistic-lock属性有如下可选取值:
? none 无乐观锁
? version 通过版本机制实现乐观锁
? dirty 通过检查发生变动过的属性实现乐观锁
? all 通过检查所有属性实现乐观锁
其中通过version实现的乐观锁机制是Hibernate官方推荐的乐观锁实现,同时也 是Hibernate中,目前唯一在数据对象脱离Session发生修改的情况下依然有效的锁机 制。因此,一般情况下,我们都选择version方式作为Hibernate乐观锁实现机制。
2. 添加一个Version属性描述符
代码内容
注意version 节点必须出现在ID 节点之后。 这里我们声明了一个version属性,用于存放用户的版本信息,保存在TUser表的 version字段中。 此时如果我们尝试编写一段代码,更新TUser表中记录数据,如:
代码内容
每次对TUser进行更新的时候,我们可以发现,数据库中的version都在递增。 而如果我们尝试在tx.commit 之前,启动另外一个Session,对名为Erica 的用 户进行操作,以模拟并发更新时的情形:
代码内容
执行以上代码,代码将在tx.commit()处抛出StaleObjectStateException异 常,并指出版本检查失败,当前事务正在试图提交一个过期数据。通过捕捉这个异常,我 们就可以在乐观锁校验失败时进行相应处理。