曾经的足迹——对Linux CAN驱动的理解(1)
在Ti的AM335X系列Cortext-A8芯片中,CAN模块采用D_CAN结构,实质即两路CAN接口。
在此分享一下对基于AM335X的Linux CAN驱动源码的理解。下面来分析它的驱动源码及其工作方式。
在Linux内核源码中,CAN设备驱动文件如下:
drivers/net/can/d_can/d_can_platform.c
drivers/net/can/d_can/d_can.c
drivers/net/can/d_can/d_can.h
首先分析d_can_platform.c文件,驱动运行时,也是先从这里开始。首先是驱动入口函数:
module_init(d_can_plat_init);
static int __init d_can_plat_init(void)
{
printk(KERN_INFO D_CAN_DRV_DESC "\n");
return platform_driver_register(&d_can_plat_driver);
}
在驱动入口函数d_can_plat_init()中,使用platform_driver_register(&d_can_plat_driver)将结构体变量d_can_plat_driver注册为平台驱动。
static struct platform_driver d_can_plat_driver = {
.driver = {
.name = D_CAN_DRV_NAME,
.owner = THIS_MODULE,
},
.probe = d_can_plat_probe,
.remove = __devexit_p(d_can_plat_remove),
平台驱动中,最重要的是探测函数d_can_plat_probe。探测函数主要的工作是获取平台设备传递过来的资源及初始化硬件。下面来看看d_can_plat_probe()函数都做了些什么工作。};
static int __devinit d_can_plat_probe(struct platform_device *pdev)
{
int ret = 0;
void __iomem *addr;
struct net_device *ndev;
struct d_can_priv *priv;
struct resource *mem;
/* 定义d_can_platform_data结构体变量指针pdata,d_can_platform_data结构体类型与板级文件中的平台设备使用的结构体类型是一致的 */
struct d_can_platform_data *pdata;
/*获取平台设备数据*/
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "No platform data\n");
goto exit;
}
/* allocate the d_can device */
/*分配d_can设备,如can0、can1、…等*/
ndev = alloc_d_can_dev(pdata->num_of_msg_objs);
if (!ndev) {
ret = -ENOMEM;
dev_err(&pdev->dev, "alloc_d_can_dev failed\n");
goto exit;
}
/*获取设备私有数据*/
priv = netdev_priv(ndev);
/*获取时钟并使能*/
priv->fck = clk_get(&pdev->dev, pdata->fck_name);
if (IS_ERR(priv->fck)) {
dev_err(&pdev->dev, "%s is not found\n", pdata->fck_name);
ret = -ENODEV;
goto exit_free_ndev;
}
clk_enable(priv->fck);
/*获取时钟并使能*/
priv->ick = clk_get(&pdev->dev, pdata->ick_name);
if (IS_ERR(priv->ick)) {
dev_err(&pdev->dev, "%s is not found\n", pdata->ick_name);
ret = -ENODEV;
goto exit_free_fck;
}
clk_enable(priv->ick);
/* get the platform data */
/*获取平台内存资源*/
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
ret = -ENODEV;
dev_err(&pdev->dev, "No mem resource\n");
goto exit_free_clks;
}
/*申请I/O内存*/
if (!request_mem_region(mem->start, resource_size(mem),
D_CAN_DRV_NAME)) {
dev_err(&pdev->dev, "resource unavailable\n");
ret = -EBUSY;
goto exit_free_clks;
}
/*在内核中访问 I/O 内存之前,需首先使用 ioremap()函数将设备所处的物理地址映
射到虚拟地址*/
addr = ioremap(mem->start, resource_size(mem));
if (!addr) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto exit_release_mem;
}
/* IRQ specific to Error and status & can be used for Message Object */
ndev->irq = platform_get_irq_byname(pdev, "int0");
if (!ndev->irq) {
dev_err(&pdev->dev, "No irq0 resource\n");
goto exit_iounmap;
}
/* IRQ specific for Message Object */
priv->irq_obj = platform_get_irq_byname(pdev, "int1");
if (!priv->irq_obj) {
dev_err(&pdev->dev, "No irq1 resource\n");
goto exit_iounmap;
}
priv->base = addr;
priv->can.clock.freq = clk_get_rate(priv->fck);
priv->test_mode = pdata->test_mode_enable;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
/*注册CAN网络设备*/
ret = register_d_can_dev(ndev);
if (ret) {
dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
D_CAN_DRV_NAME, ret);
goto exit_free_device;
}
dev_info(&pdev->dev, "%s device registered (irq=%d, irq_obj=%d)\n",
D_CAN_DRV_NAME, ndev->irq, priv->irq_obj);
return 0;
exit_free_device:
platform_set_drvdata(pdev, NULL);
exit_iounmap:
iounmap(addr);
exit_release_mem:
release_mem_region(mem->start, resource_size(mem));
exit_free_clks:
clk_disable(priv->ick);
clk_put(priv->ick);
exit_free_fck:
clk_disable(priv->fck);
clk_put(priv->fck);
exit_free_ndev:
free_d_can_dev(ndev);
exit:
dev_err(&pdev->dev, "probe failed\n");
return ret;
}
在d_can_plat_probe()函数中调用register_d_can_dev()注册CAN为网络设备。函数register_d_can_dev()在文件drivers/net/can/d_can/d_can.c中。通过EXPORT_SYMBOL_GPL宏导出。
int register_d_can_dev(struct net_device *dev)
{
/* we support local echo */
dev->flags |= IFF_ECHO;
dev->netdev_ops = &d_can_netdev_ops;
return register_candev(dev);
}
EXPORT_SYMBOL_GPL(register_d_can_dev);
在register_d_can_dev()函数中填充其网络设备操作函数成员dev->netdev_ops= &d_can_netdev_ops。
static const struct net_device_ops d_can_netdev_ops = {
.ndo_open = d_can_open,
.ndo_stop = d_can_close,
.ndo_start_xmit = d_can_start_xmit,
};
由于Linux的CAN驱动是写成了socket can的架构,即将其模拟成网络设备。因此我们可以借鉴操作网络设备的方法,进行socket can的应用编程。
下面我们借用一个开源的socket can工具:canconfig将CAN设备打开。相应的在内核驱动层会相应调用d_can_open()函数。
static int d_can_open(struct net_device *ndev)
{
int err;
struct d_can_priv *priv = netdev_priv(ndev);
/* Open common can device */
err = open_candev(ndev);
if (err) {
netdev_err(ndev, "open_candev() failed %d\n", err);
return err;
}
/* register interrupt handler for Message Object (MO) and Error + status change (ES) */
err = request_irq(ndev->irq, &d_can_isr, IRQF_SHARED, ndev->name,
ndev);
if (err) {
netdev_err(ndev, "failed to request MO_ES interrupt\n");
goto exit_close_candev;
}
/* register interrupt handler for only Message Object */
err = request_irq(priv->irq_obj, &d_can_isr, IRQF_SHARED, ndev->name,
ndev);
if (err) {
netdev_err(ndev, "failed to request MO interrupt\n");
goto exit_free_irq;
}
/* start the d_can controller */
// d_can_start(ndev);
napi_enable(&priv->napi);
netif_start_queue(ndev);
d_can_start(ndev); //embest
return 0;
exit_free_irq:
free_irq(ndev->irq, ndev);
exit_close_candev:
close_candev(ndev);
return err;
}