(三)假言命题及其推理
假言命题是断定事物情况之间条件关系的命题。假言命题中,表示条件的肢命题称为假言命题的前件,表示依赖该条件而成立的命题称为假言命题的后件。假言命题因其所包含的联结词的不同而具有不同的逻辑性质。
1.充分条件假言命题及其推理
充分条件的假言命题是指前件是后件的充分条件的假言命题。
充分条件假言命题联结词的语言标志通常是:“如果……那么……”、“只要……就……”、“若……必…”等等。充分条件假言命题的逻辑公式是:如果P,那么q;逻辑上则表示为:p→q(读作“P蕴涵q”)。
充分条件假言判断标准形式是:“如果P,那么q”,其真假关系如下:
充分条件假言推理有两条规则:
(1)肯定前件就要肯定后件,否定后件就要否定前件。
(2)否定前件不能否定后件,肯定后件不能肯定前件。
2.必要条件假言命题及其推理
必要条件的假言命题是指前件是后件的必要条件的假言命题。所谓前件是后件的必要条件是指:如果不存在前件所断定的情况,就不会有后件所断定的事物情况,即前件所断定的事物情况的存在,对于后件所断定的事物情况的存在来说是必不可少的。
表达必要条件假言命题的联结词有“只有……才”,“不……(就)不……”,“没有……没有……”等。
我们一般把必要条件假言命题表述成如下形式:只有P,才q。逻辑上则表示为:P←q(读作“P反蕴涵q”)。
必要条件假言判断标准形式是:“只P,才q”,其真假关系如下:
必要条件假言推理也相应有两条规则:
(1)否定前件就要否定后件,肯定后件就要肯定前件。
(2)肯定前件不能肯定后件,否定后件不能否定前件。
3.充分必要条件假言命题及其推理
表达充分必要条件假言命题的联结词有:“只要而且只有……才……”,“若……则……且若不……则不……”,“当且仅当……则……”等等。我们一般将之表示为如下形式:当且仅当P,则q。逻辑上则表示
为:p↔q(读作“P等值于q”)。
(四)负命题及其推理
1.负命题
通过对原命题断定情况的否定而作出的命题,就叫做负命题。
负命题的逻辑公式是:如果用P表示原命题,那么,负命题即为“并非P”。其真假关系如表:
2.负命题的种类
任何一个命题都可对其进行否定而得到一个相应的负命题。简单的性质命题的负命题实质上即为对当关系中的相应矛盾命题。
SAP的负命题是SOP;SOP的负命题是SAP;SEP的负命题是SIP;SIP的负命题是SEP。
(五)二难推理二难推理是由丽个假言前提和一个具有二肢的选言前提联合作为前提而构成的推理。它也称为假言选言推理。
五、模态命题及其推理
在逻辑中,“必然”、“可能”、“不可能”等叫做“模态词”,包含模态词的命题叫做“模态命题”。根据四种模态命题之间的逻辑关系(真假关系),便可构成一系列简单的模态命题的直接推理。
1.根据模态命题矛盾关系的直接推理
(1)必然p,推出并非可能非p;
(2)并非必然p,推出可能非p;
(3)可能非p,推出并非必然p;
(4)并非可能非p,推出必然p;
(5)必然非p,推出并非可能p;
(6)并非必然非p,推出可能p;
(7)可能p,推出并非必然非p;
(8)并非可能p,推出必然非p。
2.根据模态命题反对关系的直接推理
(1)必然P,推出并非必然非P;
(2)必然非P,推出并非必然P。
3.根据模态命题下反对关系的直接推理
(1)并非可能P,推出可能非P;
(2)并非可能非P,推出可能P。
4.根据模态命题差等关系的直接推理
(1)必然P,推出可能p;
(2)并非可能P,推出并非必然P;
(3)必然非p,推出可能非P;
(4)并非可能非p,推出并非必然非p。
六、逻辑基本规律
(一)同一律
同一律的基本内容是:在同一思维过程中,每一思想的自身必须是同一的。
同一律的公式是:“A是A”。公式中的A可以表示任何思想,即可以表示任何一个概念或任何一个命题。
就是说,在同一思维过程中,所使用的每一概念或判断都有其确定的内容,而不能任意变换。
(二)矛盾律
矛盾律实际上是禁止矛盾律,或不矛盾律。矛盾律的基本内容是:在同一思维过程中,两个互相矛盾或反对的思想不能同时是真的。或者说,一个思想及其否定不能同时是真的。
矛盾律的公式是:并非(A而且非A)。公式中的“A”表示任一命题,“非A”表示与A具有矛盾关系或反对关系的命题。
(三)排中律.
排中律的基本内容是:在同一思维过程中,两个互相矛盾的思想不能同假,必有一真。
排中律的公式是:“A或者非A”。
排中律的主要作用在于保证思想的明确性。而思维的明确性也是正确思维的一个必要条件。