重点:正态分布的概念
难点:正态分布的计算
正态分布是质量管理中最为重要也最常使用的分布,它能描述很多质量特性X的统计规律性。
一 正态分布的概念
1定义
如果随机变量X的概率密度函数有如下形式:
则称X服从参数为μ,σ2的正态分布。
记作X~N(μ,σ2)。
当 时,正态分布称为标准正态分布,记为 ,它的密度函数用 表示,分布函数用 表示。
2 正态分布的密度函数图像
我们把正态分布的密度函数图像叫做正态曲线。
由于密度函数总是大于0的,所以密度函数的函数图像位于x轴的上方。而且由正态分布的表达式,可以发现,它的函数图像关于 对称,它的函数图像是对称的钟形曲线。因为p(x)的最大值为 ,所以正态曲线的最高点的纵坐标为 ;
(注:根据连续型随机变量密度函数的定义,钟形曲线下的面积为1。)
3参数的意义
正态分布 中,含有两个参数 与 。其中 为正态分布的均值,它是正态分布的中心,表明质量特性X在u附近取值的机会最大; 是正态分布的方差, 是正态分布的标准差。 愈大,分布愈分散,曲线低而平坦; 愈小,分布愈集中,曲线高而陡。
固定标准差 ,对不同的均值,如 ,对应的正态曲线的形状完全相同,仅位置不同。
固定均值 ,不同的标准差,如 ,对应的正态曲线的位置相同,但形状(高低与胖瘦)不同。
4正态分布的应用
正态分布是概率论中最重要的分布,在应用及理论研究中占有头等重要的地位,它与二项分布是概率论中最重要的两种分布。正态分布的重要性是多方面的,主要有以下几点:
1 许多分布可用正态分布来近似。正态分布正是法国数学家德莫佛为了近似二项分布,于1733年首先引进的,1812年拉普拉斯改进了德莫佛的结果。后来,其他一些人推广了这一结果,现已包含在概率论著名的中心极限定理中。根据这个定理,许多独立、任意分布的随机变量之和具有近似正态分布。因此,在实际中遇到的许多随机现象都服从或近似地服从正态分布。
2 由正态分布可以导出其它许多重要分布。例如,在数理统计的理论和应用中占极重要地位的2-分布、t-分布和F-分布,都是正态随机变量函数的分布。
3 正态分布具有各种良好的性质。在概率论与数理统计的研究和应用中,每当涉及正态分布时,一般都可以得到完满而简单的结果。
二 标准正态分布
1概率密度函数
当μ=0,σ=1时,称X服从标准正态分布,记作X~N(0,1)。
服从标准正态分布的随机变量记为U,它的概率密度函数记为 。
若X~N(μ,σ2),则 ~N(0,1)
实际中很少有一个质量特性(随机变量)的均值恰好为0,方差与标准差恰好为1。一些质量特性的不合格品率均要通过标准正态分布才能算得,这一点将在后面叙述。
2标准正态分布表
标准正态分布函数表,它可用来计算形如“ ”的随机事件发生的概率 ,记为 。从图形上看,当 时,这个概率相当于曲线下方,X轴上方,以及直线 左边的图形的面积。由于标准正态分布的密度函数图像关于y轴对称,所以(-x)=1-(x)。
同学们自己可以根据标准正态分布密度函数的图像及其几何意义理解上述公式。
读书人建筑频道reader8.com/exam/zaojia/