在上一篇文章《考研数学积分区域对称性和被积函数奇偶性(1)》中我们说过“在计算积分问题时,我们能注意到积分区域的(关于坐标原点或坐标轴)对称性和被积函数的奇偶性,这是一个非常良好的习惯.在计算定积分、重积分或第一型曲线(面)积分时,他可以帮助我们提高效率,大大减少计算工作量”.
因为第二型曲线(面)积分的积分区域曲线(面)是带有方向性的,所以就在“积分区域具有对称性和被积函数具有奇偶性”条件下,难有我们所熟悉的性质了.实际上恰有完全相反的结论.但是又不能粗糙地、不严格地说“偶函数的积分等于零,奇函数积分等于半域上积分的两倍”.
为了说明问题,我们尽量举运算简单的例子,这里就以下几个例子.