Mahout系列之------Canopy算法
Mahout canopy 聚类流程如下:
(1)将文本向量化。
?? 在文档向量化之前,需要将出于一个目录中的文档序列化,所谓序列化就是将文档内容写成SequenceFile 格式,key:文档标题 ,value:文档内容。
??? 该过程将文本分词,计算ngram ,特征抽取,生成字典,计算特征权重生成文档词矩阵。
? 值得说明的是该过程可以由其他的方法替代,不仅限于用Mahout ,只要能生成向量即可。
(2)用Canopy 聚类。
?? 参数:
?????? 距离度量 :cos距离(常用于文本距离度量)
?????? T1:0.5左右
?????? T2:0.25 左右
?????? 输入:向量化生成的sequencefile
??? 当T1过大时,会使许多点属于多个Canopy,可能会造成各个簇的中心点间距离较近,各簇
间区别不明显;
当T2过大时,增加强标记数据点的数量,会减少簇个个数;T2过小,会增加簇的个数,同时
增加计算时间
?(3)结果。
???? ../clusteredPoints?????????? 最终结果,类标志 向量
??? .. /clusters-0??????????????????? 簇中心
???
??? ClusteredPoints 数据如下:
?? Key: 4: Value: 1.0: [1.000, -0.213, -0.956, -0.003, 0.056, 0.091, 0.017, -0.024, 1.000]
?? Key: 3: Value: 1.0: [0:1.000, 1:3.147, 2:2.129, 3:-0.006, 4:-0.056, 5:-0.063, 6:-0.002, 7:0.109]
?? Key: 0: Value: 1.0: [1.000, -2.165, -2.718, -0.008, 0.043, -0.103, -0.156, -0.024, 1.000]
?? Key: 0: Value: 1.0: [1.000, -4.337, -2.686, -0.012, 0.122, 0.082, -0.021, -0.042, 1.000]
???
?? clusters-0 数据如下:
?? Key: C-0: Value: C-0: {8:0.9903846153846154,7:0.03641560060121199,6:-0.011104891601517057,5:-0.018746460252920098,4:0.0018451485029808527,3:0.02659166333809029,2:-2.0914853859015725,1:-2.2735344078494943,0:1.0}
Key: C-1: Value: C-1: {8:0.005681818181818182,7:-0.005705937927015517,6:0.018373023001902314,5:-0.02408518413578759,4:-0.0649238556654074,3:-0.003042417008279087,2:2.5123232537912283,1:2.0664589339683306,0:1.0}
Key: C-2: Value: C-2: {8:0.006493506493506494,7:-0.01019964334516059,6:0.023497740573602648,5:-0.03181163901232867,4:-0.05941297790332273,3:-0.017834190866604666,2:2.382976575761404,1:2.1735244959638065,0:1.0}
Key: C-3: Value: C-3: {8:0.007575757575757576,7:-0.011551099054202508,6:0.023459485214657627,5:-0.02978024551438345,4:-0.05926968634175531,3:-0.016503525708008473,2:2.2626847929337592,1:2.1570361543820167,0:1.0}
Key: C-4: Value: C-4: {8:0.9230769230769231,7:0.04076923076923077,6:-0.011730769230769232,5:-0.019307692307692307,4:0.024653846153846155,3:0.01373076923076923