首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 服务器 > 云计算 >

地图reduce实现"浏览该商品的人大多数还浏览了"经典应用

2013-09-28 
mapreduce实现浏览该商品的人大多数还浏览了经典应用输入:日期...cookie id....商品id..xxxxxx输出:商品

mapreduce实现"浏览该商品的人大多数还浏览了"经典应用

输入:

日期    ...cookie id.        ...商品id..

xx            xx                        xx

输出:

商品id         商品id列表(按优先级排序,用逗号分隔)

xx                   xx

比如:

id1              id3,id0,id4,id2

id2             id0,id5

整个计算过程分为4步

1、提取原始日志日期,cookie id,商品id信息,按天计算,最后输出数据格式

商品id-0 商品id-1

xx           x x         

这一步做了次优化,商品id-0一定比商品id-1小,为了减少存储,在最后汇总数据转置下即可

reduce做局部排序及排重

 

2、基于上次的结果做汇总,按天计算

商品id-0 商品id-1  关联值(关联值即同时访问这两个商品的用户数)

xx             x x                xx

 

3、汇总最近三个月数据,同时考虑时间衰减,时间越久关联值的贡献越低,最后输出两两商品的关联值(包括转置后)

 

4、行列转换,生成最后要的推荐结果数据,按关联值排序生成

 

第一个MR

import java.io.IOException;import java.util.ArrayList;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;import org.apache.log4j.Logger;/* * 输入:原始数据,会有重复 *日期 cookie 楼盘id *  * 输出: * 日期 楼盘id1 楼盘id2  //楼盘id1一定小于楼盘id2 ,按日期 cookie进行分组 *  */public class HouseMergeAndSplit {public static class Partitioner1 extends Partitioner<TextPair, Text> {  @Override  public int getPartition(TextPair key, Text value, int numParititon) {  return Math.abs((new Text(key.getFirst().toString()+key.getSecond().toString())).hashCode() * 127) % numParititon;  }}  public static class Comp1 extends WritableComparator {  public Comp1() {   super(TextPair.class, true);  }  @SuppressWarnings("unchecked")  public int compare(WritableComparable a, WritableComparable b) {   TextPair t1 = (TextPair) a;   TextPair t2 = (TextPair) b;   int comp= t1.getFirst().compareTo(t2.getFirst());   if (comp!=0)   return comp;   return t1.getSecond().compareTo(t2.getSecond());  }}  public static class TokenizerMapper        extends Mapper<LongWritable, Text, TextPair, Text>{      Text val=new Text("test");    public void map(LongWritable key, Text value, Context context                    ) throws IOException, InterruptedException {                         String s[]=value.toString().split("\001");            TextPair tp=new TextPair(s[0],s[1],s[4]+s[3]); //thedate cookie city+houseid       context.write(tp, val);    }  }    public static class IntSumReducer        extends Reducer<TextPair,Text,Text,Text> {  private static String comparedColumn[] = new String[3];  ArrayList<String> houselist= new ArrayList<String>();  private static Text keyv = new Text();    private static Text valuev = new Text();  static Logger logger = Logger.getLogger(HouseMergeAndSplit.class.getName());      public void reduce(TextPair key, Iterable<Text> values,                        Context context                       ) throws IOException, InterruptedException {        houselist.clear();    String thedate=key.getFirst().toString();    String cookie=key.getSecond().toString();             for (int i=0;i<3;i++)    comparedColumn[i]="";        //first+second为分组键,每次不同重新调用reduce函数    for (Text val:values)    {        if (thedate.equals(comparedColumn[0]) && cookie.equals(comparedColumn[1])&&  !key.getThree().toString().equals(comparedColumn[2]))     {    // context.write(new Text(key.getFirst()+" "+key.getSecond().toString()), new Text(key.getThree().toString()+" first"+ " "+comparedColumn[0]+" "+comparedColumn[1]+" "+comparedColumn[2]));     houselist.add(key.getThree().toString());          comparedColumn[0]=key.getFirst().toString();       comparedColumn[1]=key.getSecond().toString();       comparedColumn[2]=key.getThree().toString();           }              if (!thedate.equals(comparedColumn[0])||!cookie.equals(comparedColumn[1]))           {          //  context.write(new Text(key.getFirst()+" "+key.getSecond().toString()), new Text(key.getThree().toString()+" second"+ " "+comparedColumn[0]+" "+comparedColumn[1]+" "+comparedColumn[2]));       houselist.add(key.getThree().toString());       comparedColumn[0]=key.getFirst().toString();       comparedColumn[1]=key.getSecond().toString();       comparedColumn[2]=key.getThree().toString();              }                    }        keyv.set(comparedColumn[0]); //日期    //valuev.set(houselist.toString());    //logger.info(houselist.toString());    //context.write(keyv,valuev);            for (int i=0;i<houselist.size()-1;i++)    {    for (int j=i+1;j<houselist.size();j++)    {    valuev.set(houselist.get(i)+""+houselist.get(j)); //关联的楼盘    context.write(keyv,valuev);    }    }         }  }  public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    if (otherArgs.length != 2) {      System.err.println("Usage: wordcount <in> <out>");      System.exit(2);    }        FileSystem fstm = FileSystem.get(conf);       Path outDir = new Path(otherArgs[1]);       fstm.delete(outDir, true);       conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符    Job job = new Job(conf, "HouseMergeAndSplit");    job.setNumReduceTasks(4);    job.setJarByClass(HouseMergeAndSplit.class);    job.setMapperClass(TokenizerMapper.class);        job.setMapOutputKeyClass(TextPair.class);    job.setMapOutputValueClass(Text.class);    // 设置partition    job.setPartitionerClass(Partitioner1.class);    // 在分区之后按照指定的条件分组    job.setGroupingComparatorClass(Comp1.class);    // 设置reduce    // 设置reduce的输出    job.setReducerClass(IntSumReducer.class);    job.setOutputKeyClass(Text.class);    job.setOutputValueClass(Text.class);    //job.setNumReduceTasks(18);    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));    System.exit(job.waitForCompletion(true) ? 0 : 1);  }}

TextPair

import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparable;public class TextPair implements WritableComparable<TextPair> {private Text first;private Text second;private Text three;public TextPair() {  set(new Text(), new Text(),new Text());}public TextPair(String first, String second,String three) {  set(new Text(first), new Text(second),new Text(three));}public TextPair(Text first, Text second,Text Three) {  set(first, second,three);}public void set(Text first, Text second,Text three) {  this.first = first;  this.second = second;  this.three=three;}public Text getFirst() {  return first;}public Text getSecond() {  return second;}public Text getThree() {  return three;}public void write(DataOutput out) throws IOException {  first.write(out);  second.write(out);  three.write(out);}public void readFields(DataInput in) throws IOException {  first.readFields(in);  second.readFields(in);  three.readFields(in);}public int compareTo(TextPair tp) {  int cmp = first.compareTo(tp.first);  if (cmp != 0) {   return cmp;  }  cmp= second.compareTo(tp.second);  if (cmp != 0) {   return cmp;  }  return three.compareTo(tp.three);}}


TextPairSecond

import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.FloatWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparable;public class TextPairSecond implements WritableComparable<TextPairSecond> {private Text first;private FloatWritable second;public TextPairSecond() {  set(new Text(), new FloatWritable());}public TextPairSecond(String first, float second) {  set(new Text(first), new FloatWritable(second));}public TextPairSecond(Text first, FloatWritable second) {  set(first, second);}public void set(Text first, FloatWritable second) {  this.first = first;  this.second = second;}public Text getFirst() {  return first;}public FloatWritable getSecond() {  return second;}public void write(DataOutput out) throws IOException {  first.write(out);  second.write(out);}public void readFields(DataInput in) throws IOException {  first.readFields(in);  second.readFields(in);}public int compareTo(TextPairSecond tp) {  int cmp = first.compareTo(tp.first);  if (cmp != 0) {   return cmp;  }  return second.compareTo(tp.second);}}

 

第二个MR

import java.io.IOException;import java.text.SimpleDateFormat;import java.util.ArrayList;import java.util.Date;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.Mapper.Context;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;import org.apache.log4j.Logger;/* *  统计楼盘之间共同出现的次数 * 输入: * 日期 楼盘1 楼盘2 *  * 输出: * 日期 楼盘1 楼盘2 共同出现的次数 *  */public class HouseCount {  public static class TokenizerMapper        extends Mapper<LongWritable, Text, Text, IntWritable>{        IntWritable iw=new IntWritable(1);    public void map(LongWritable key, Text value, Context context                    ) throws IOException, InterruptedException {             context.write(value, iw);    }  }    public static class IntSumReducer        extends Reducer<Text,IntWritable,Text,IntWritable> { IntWritable result=new IntWritable();    public void reduce(Text key, Iterable<IntWritable> values,                        Context context                       ) throws IOException, InterruptedException {         int sum=0;     for (IntWritable iw:values)     {     sum+=iw.get();     }     result.set(sum);     context.write(key, result);        }  }  public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    if (otherArgs.length != 2) {      System.err.println("Usage: wordcount <in> <out>");      System.exit(2);    }        FileSystem fstm = FileSystem.get(conf);       Path outDir = new Path(otherArgs[1]);       fstm.delete(outDir, true);       conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符    Job job = new Job(conf, "HouseCount");    job.setNumReduceTasks(2);    job.setJarByClass(HouseCount.class);    job.setMapperClass(TokenizerMapper.class);        job.setMapOutputKeyClass(Text.class);    job.setMapOutputValueClass(IntWritable.class);    // 设置reduce    // 设置reduce的输出    job.setReducerClass(IntSumReducer.class);    job.setOutputKeyClass(Text.class);    job.setOutputValueClass(IntWritable.class);    //job.setNumReduceTasks(18);    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));    System.exit(job.waitForCompletion(true) ? 0 : 1);  }}


第三个MR

import java.io.IOException;import java.text.ParseException;import java.text.SimpleDateFormat;import java.util.ArrayList;import java.util.Calendar;import java.util.Date;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.FloatWritable;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.Mapper.Context;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;import org.apache.log4j.Logger;/* * 汇总近三个月统计楼盘之间共同出现的次数,考虑衰减系数, 并最后a b 转成 b a输出一次 * 输入: * 日期  楼盘1 楼盘2 共同出现的次数 *  * 输出 * 楼盘1 楼盘2 共同出现的次数(考虑了衰减系数,每天的衰减系数不一样) *  */public class HouseCountHz {  public static class HouseCountHzMapper        extends Mapper<LongWritable, Text, Text, FloatWritable>{    Text keyv=new Text();FloatWritable valuev=new FloatWritable();    public void map(LongWritable key, Text value, Context context                    ) throws IOException, InterruptedException {        String[] s=value.toString().split("\t");    keyv.set(s[1]+""+s[2]);//楼盘1,楼盘2    Calendar date1=Calendar.getInstance();  Calendar d2=Calendar.getInstance();  Date b = null;  SimpleDateFormat sdf=new SimpleDateFormat("yyyy-MM-dd");  try {    b=sdf.parse(s[0]);  } catch (ParseException e) {   e.printStackTrace();  }  d2.setTime(b);  long n=date1.getTimeInMillis();  long birth=d2.getTimeInMillis();  long sss=n-birth;  int day=(int)((sss)/(3600*24*1000)); //该条记录的日期与当前日期的日期差  float factor=1/(1+(float)(day-1)/10); //衰减系数    valuev.set(Float.parseFloat(s[3])*factor);         context.write(keyv, valuev);    }  }    public static class HouseCountHzReducer        extends Reducer<Text,FloatWritable,Text,FloatWritable> {  FloatWritable result=new FloatWritable();  Text keyreverse=new Text();    public void reduce(Text key, Iterable<FloatWritable> values,                        Context context                       ) throws IOException, InterruptedException {         float sum=0;     for (FloatWritable iw:values)     {     sum+=iw.get();     }     result.set(sum);     String[] keys=key.toString().split("\t");     keyreverse.set(keys[1]+""+keys[0]);     context.write(key, result);     context.write(keyreverse, result);        }  }  public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    if (otherArgs.length != 2) {      System.err.println("Usage: wordcount <in> <out>");      System.exit(2);    }        FileSystem fstm = FileSystem.get(conf);       Path outDir = new Path(otherArgs[1]);       fstm.delete(outDir, true);       conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符    Job job = new Job(conf, "HouseCountHz");    job.setNumReduceTasks(2);    job.setJarByClass(HouseCountHz.class);    job.setMapperClass(HouseCountHzMapper.class);        job.setMapOutputKeyClass(Text.class);    job.setMapOutputValueClass(FloatWritable.class);    // 设置reduce    // 设置reduce的输出    job.setReducerClass(HouseCountHzReducer.class);    job.setOutputKeyClass(Text.class);    job.setOutputValueClass(FloatWritable.class);    //job.setNumReduceTasks(18);    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));    System.exit(job.waitForCompletion(true) ? 0 : 1);  }}


第四个MR

import java.io.IOException;import java.util.Iterator;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.FloatWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.WritableComparator;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;/* * 输入数据: * 楼盘1 楼盘2 共同出现的次数 *  * 输出数据 *  楼盘1 楼盘2,楼盘3,楼盘4 (按次数排序) */public class HouseRowToCol {public static class Partitioner1 extends Partitioner<TextPairSecond, Text> {  @Override  //分区  public int getPartition(TextPairSecond key, Text value, int numParititon) {   return Math.abs((new Text(key.getFirst().toString()+key.getSecond().toString())).hashCode() * 127) % numParititon;  }}//分组  public static class Comp1 extends WritableComparator {  public Comp1() {   super(TextPairSecond.class, true);  }  @SuppressWarnings("unchecked")  public int compare(WritableComparable a, WritableComparable b) {  TextPairSecond t1 = (TextPairSecond) a;  TextPairSecond t2 = (TextPairSecond) b;    return t1.getFirst().compareTo(t2.getFirst());  }}    //排序  public static class KeyComp extends WritableComparator {  public KeyComp() {   super(TextPairSecond.class, true);  }  @SuppressWarnings("unchecked")  public int compare(WritableComparable a, WritableComparable b) {  TextPairSecond t1 = (TextPairSecond) a;  TextPairSecond t2 = (TextPairSecond) b;   int comp= t1.getFirst().compareTo(t2.getFirst());   if (comp!=0)   return comp;   return -t1.getSecond().compareTo(t2.getSecond());  }}   public static class HouseRowToColMapper        extends Mapper<LongWritable, Text, TextPairSecond, Text>{  Text houseid1=new Text();  Text houseid2=new Text();  FloatWritable weight=new FloatWritable();    public void map(LongWritable key, Text value, Context context                    ) throws IOException, InterruptedException {         String s[]=value.toString().split("\t");        weight.set(Float.parseFloat(s[2]));       houseid1.set(s[0]);       houseid2.set(s[1]);     TextPairSecond tp=new TextPairSecond(houseid1,weight);      context.write(tp, houseid2);    }  }    public static class HouseRowToColReducer        extends Reducer<TextPairSecond,Text,Text,Text> {     Text valuev=new Text();    public void reduce(TextPairSecond key, Iterable<Text> values,                        Context context                       ) throws IOException, InterruptedException {    Text keyv=key.getFirst();    Iterator<Text> it=values.iterator();    StringBuilder sb=new StringBuilder(it.next().toString());    while(it.hasNext())    {    sb.append(","+it.next().toString());    }    valuev.set(sb.toString());    context.write(keyv, valuev);                }  }  public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    if (otherArgs.length != 2) {      System.err.println("Usage: wordcount <in> <out>");      System.exit(2);    }        FileSystem fstm = FileSystem.get(conf);       Path outDir = new Path(otherArgs[1]);       fstm.delete(outDir, true);       conf.set("mapred.textoutputformat.separator", "\t"); //reduce输出时key value中间的分隔符    Job job = new Job(conf, "HouseRowToCol");    job.setNumReduceTasks(4);    job.setJarByClass(HouseRowToCol.class);    job.setMapperClass(HouseRowToColMapper.class);        job.setMapOutputKeyClass(TextPairSecond.class);    job.setMapOutputValueClass(Text.class);    // 设置partition    job.setPartitionerClass(Partitioner1.class);    // 在分区之后按照指定的条件分组    job.setGroupingComparatorClass(Comp1.class);    job.setSortComparatorClass(KeyComp.class);    // 设置reduce    // 设置reduce的输出    job.setReducerClass(HouseRowToColReducer.class);    job.setOutputKeyClass(Text.class);    job.setOutputValueClass(Text.class);    //job.setNumReduceTasks(18);    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));    System.exit(job.waitForCompletion(true) ? 0 : 1);  }}




 

 

热点排行