线性代数这门学科在考研数学中占有重要的地位,它和高数与概率统计相比,有其自身的特点,而我们同学们在学习这门课时应该要注重对知识点的总结归纳。线性代数还是以计算题为主,证明题为辅,因此,这要求我们必须注重计算能力的培养及提高。现在的考研趋势是越来越注重基础,淡化技巧。下文中,跨考教育数学教研室吴老师就为考生总结了线性代数的解题技巧。
一、行列式
关于行列式这一块,它在整个考研数学试卷中所占分量不是很大,一般主要是以填空选择题为主,这一块是考研数学中必考内容,它不单单考察行列式的概念、性质、运算,与行列式有关的考题也是很多的,比如在逆矩阵、向量组的线性相关性、方阵的秩、线性方程组解的判断、特征值的求解、正定二次型与正定矩阵的判断等问题中都会用到行列式的有关计算。因此,对于行列式的计算方法我们一定要熟练掌握。
二、矩阵
关于矩阵这一块:矩阵是线性代数的核心知识,它是后面其他各章节的基础,在向量组、线性方程组、特征值、二次型中均有体现。矩阵的概念、运算及理论贯穿整个线性代数的知识部分。这部分的考点涉及到伴随矩、逆矩阵、初等矩阵、矩阵的秩以及矩阵方程,这些内容是有关矩阵知识中的一类常见的试题。
三、向量
关于向量这部分:它既是重点又是难点,主要是因为其比较抽象,因此很多考生对这一块比较陌生,进而就会导致我们同学们在学习理解以及做题上的困难。这一部分主要是要掌握两类题型:一是关于一个向量能否由一组向量线性表出的问题,二是关于一组向量的线性相关性的问题。而这两类题型我们一般是与非齐次方程组和齐次方程组一一对应来求解的。
四、线性方程
关于线性方程组这一块;线性方程组在近些年出现的频率较高,几乎每年都有考题,它也是线性代数部分考查的重点内容。所以对于线性方程组这一部分的内容,同学们一定要掌握。其常见的题型如下:(1)线性方程组的求解 (2)方程组解向量的判别及解的性质(3)齐次线性方程组的基础解系(4)非齐次线性方程组的通解结构(5)两个方程组的公共解、同解问题。
五、特征值、特征向量
关于特征值、特征向量这一块:它也是线性代数的重点内容,在我们考研数学中一般都是题多分值大。因此我们要牢牢掌握这章节的内容,其常见题型如下:(1)数值矩阵的特征值和特征向量的求法 (2)抽象矩阵特征值和特征向量的求法(3)判定矩阵的相似对角化 (4)由特征值或特征向量反求A (5)有关实对称矩阵的问题。
六、二次型
关于二次型这一块:二次型是与其二次型的矩阵对应的,因此有关二次型的很多问题我们都可以转化为二次型的矩阵问题,所以正确写出二次型的矩阵是这一章节最基础的要求。而本章节的常见题型如下:(1)二次型表成矩阵形式 (2)化二次型为标准形 (3)二次型正定性的判别。
线性代数部分的知识点比较琐碎,但是整体不难,希望同学们认真学习。