首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 建筑工程 > 注册结构工程师 > 二级结构师专业 >

结构可靠度分析数值方法评述

2011-07-03 
基于敏感性的分析法和一次可靠度方法(FORM)/二次可靠度方法(SORM)结合起来分析具有隐式型的功能函数的可靠性问题,能克服蒙特卡罗模拟法和响应面法的缺点。
 编辑推荐:

这些只有高中才会有的事
青少年需要学点性知识
高考志愿容易被误解专业

  对于复杂结构,功能函数g(x)通常不能明确表达为输入随机变量的函数,结构的响应通常通过数值方法(如有限元)来计算。这些数值方法一般分为三类:

  1)蒙特卡罗模拟法(Monte Carlo Simulation)

  蒙特卡罗模拟法的基本思想是在进行每一次确定性分析之前随机产生一组输入变量,大量重复的进行确定性分析之后,对结构的响应输出参数进行统计分析,计算出结构的可靠性。把蒙特卡罗模拟法与有限元法结合起来,就得到蒙特卡罗有限元法。通常把蒙特卡罗有限元法作为可靠度计算的相对精确解,但要达到较高的精度,必须取足够的样本数,因此计算工作量相当浩大。

  2)响应面法(Response Surface Method)

  响应面法的基本思想是通过近似构造一个具有明确表达形式的多项式来表达隐式功能函数g(X)(一次或二次多项式),其中X是包含所有荷载和抗力的随机变量的一个向量。本质上来说,响应面法是一套统计方法,用这种方法来寻找考虑了输入变量值的变异或不确定性之后的响应最佳值。而失效概率通过一次或二次可靠度方法计算。在响应面法中,对于一个具有大量随机变量的问题来说,准确构造一个近似多项式的所需的确定性分析是相当巨大的,因此这种方法很耗时。即使对于一个具有少量随机变量的问题来说,响应面法对可靠度估计的准确性与功能函数的近似多项式的准确性有关。如果隐含型的功能函数具有很强的非线性,这种函数逼近是非常近似的,可靠度估计也是非常近似的。

  3)基于敏感性的分析方法(Sensitivity-based Approach)

  基于敏感性的分析法和一次可靠度方法(FORM)/二次可靠度方法(SORM)结合起来分析具有隐式型的功能函数的可靠性问题,能克服蒙特卡罗模拟法和响应面法的缺点。这种方法在寻找控制点(也叫最小距离点)过程中,每一步迭代所使用的信息都是%考/试大%功能函数的真实值和真实梯度,并使用优化方法使控制点收敛于最小距离点,同蒙特卡罗模拟法和响应面法相比,它耗时小,也比响应面法更准确。另外,基于敏感性的分析方法能够从设计的角度知道结构响应对基本随机变量的敏感性。从而有可能基于随机变量的不确定性和它们对结构特性的影响得出不同随机变量的不同设计安全系数。基于敏感性的分析方法也可以在不影响计算准确性的条件下,忽略那些对结构可靠性影响不大的随机变量,从而节省计算时间。基于敏感性的分析方法中可以使用迭代摄动分析技术,并和有限元法结合起来产生所谓的随机有限元法(Stochastic Finite Element Me thod)。这种使用迭代摄动技术的随机有限元法可用来进行结构的非线性分析。

热点排行