首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 公务员频道 > 能力指导 >

行测突击:排列组合之比赛计数、错位排列题

2009-12-08 
一、比赛计数问题公务员考试中经常会出现比赛计数问题,令许多考生头疼不已。其实,比赛计数问题是有一定技巧的,掌握了这些技巧,不仅可以节约时间,而且对正确解题有很大帮助。华图教研中心公务员考试辅导专 ...

一、比赛计数问题

公务员考试中经常会出现比赛计数问题,令许多考生头疼不已。其实,比赛计数问题是有一定技巧的,掌握了这些技巧,不仅可以节约时间,而且对正确解题有很大帮助。华图教研中心公务员考试辅导专家王永恒老师将为广大考生介绍“比赛计数”问题的快速解题方法,并结合例题进行讲解,希望能给广大考生一定的启发和帮助。

根据比赛规则,比赛计数问题主要分为四类,每类比赛都有对应的解题方法,如下所示:

行测突击:排列组合之比赛计数、错位排列题

注意:单循环赛,即任意两队打一场比赛,和顺序无关,所以是组合问题;双循环赛,即任意两个队打两场比赛,和顺序有关,所以是排列问题。

例1100名男女运动员参加乒乓球单打淘汰赛,要产生男、女冠军各一名,则要安排单打赛多少场?( )

A.90 B.95 C.98 D.100

【解析】设有男运动员a人,女运动员b人。因为是淘汰赛,则要产生男冠军需要a-1场比赛,产生女冠军需要b-1场比赛,总的比赛场次需要a+b-2场。

例2足球世界杯决赛圈有32支球队参加,先平均分成八组,以单循环方式进行小组赛;每组前两名的球队再进行淘汰赛。直到产生冠、亚、季军,总共需要安排( )场比赛。

A.48 B.63 C.64 D.65

【解析】首先将32人平均分成八组,则每组有4支球队,每组球队要进行单循环赛,则每组有行测专项突击:排列组合之比赛计数、错位排列问题,则八组总共需要行测专项突击:排列组合之比赛计数、错位排列问题;又因为在小组赛中每组决出前两名,八组一共决出16支队,也就是再对这16支队伍进行淘汰赛,直到产生冠、亚、季军,则有16场比赛。所以总比赛场次为48+16=64。

例38个甲级队应邀参加比赛,先平均分成两组,分别进行单循环赛,每组决出前两名,再由每组的第一名和另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,整个赛程的比赛场数是()

A.16 B.15 C.14 D.13

【解析】此题与例2的思路相同,不再赘述。

以上比赛计数问题的解题方法简单易懂,容易掌握,希望考生能举一反三,提高解题速度和答题的准确率。

二、错位排列问题

排列组合问题向来是考生备考行测数量关系的难点之一,而其中的错位排列问题更是让考生晕头转向。不过,虽然错位排列问题有难度,但是也有快速解决之道。为帮助考生攻克难关,华图教研中心公务员考试辅导专家王永恒老师总结多年教研心得,为考生们详细解析错位排列问题的答题方法。

错位排列问题是一个古老的问题,最先由贝努利(Bernoulli)提出,其通常提法是:n个有序元素,全部改变其位置的排列数是多少?所以称之为“错位”问题。大数学家欧拉(Euler)等都有所研究。下面先给出一道错位排列题目,让广大考生有直观感觉。

例1五个编号为1、2、3、4、5的小球放进5个编号为1、2、3、4、5的小盒里面,全错位排列(即1不放1,2不放2,3不放3,4不放4,5不放5,也就是说5个全部放错)一共有多少种放法?

【解析】直接求5个小球的全错位排列不容易,我们先从简单的开始。

行测突击:排列组合之比赛计数、错位排列题

当小球数/小盒数为1~3时,比较简单,而当为4~6时,略显复杂,考生们只需要记下这几个数字即可(其实0,1,2,9,44,265是一个有规律的数字推理题,请考生们想想是什么?)由上述分析可得,5个小球的全错位排列为44种。

上述是最原始的全错位排列,但在实际公务员考题中,会有一些“变异”。

例2五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?

【解析】做此类题目时通常分为两步:第一步,从五个瓶子中选出三个,共有行测专项突击:排列组合之比赛计数、错位排列问题种选法;第二步,将三个瓶子全部贴错,根据上表有2种贴法。则恰好贴错三个瓶子的情况有行测专项突击:排列组合之比赛计数、错位排列问题种。

接下来,考生们再想这样一个问题:五个瓶子中,恰好贴错三个是不是就是恰好贴对两个呢?答案是肯定的,是。那么能不能这样考虑呢?第一步,从五个瓶子中选出二个瓶子,共有行测专项突击:排列组合之比赛计数、错位排列问题种选法;第二步,将两个瓶子全部贴对,只有1种方法,那么恰好贴对两个瓶子的方法有行测专项突击:排列组合之比赛计数、错位排列问题种。

问题出来了,为什么从贴错的角度考虑是20种贴法,而从贴对的角度考虑是10种贴法呢?

答案是,后者的解题过程是错误的,这种考虑只涉及到两个瓶子而没有考虑其他三个瓶子的标签正确与否,给瓶子贴标签的过程是不完整的,只能保证至少有两个瓶子的标签是正确的,而不能保证恰有两个瓶子的标签是正确的。所以华图教研中心公务员考试辅导专家王永恒老师建议各位考生在处理错位排列问题时,无论问恰好贴错还是问恰好贴对,都要从贴错的角度去考虑,这样处理问题简单且不易出错。

错位排列问题是排列组合问题里比较模糊、棘手的题型,所以考生们对错位排列问题一定要善于总结规律,熟能生巧,才能在临考时,准确抓住解题的突破口。

最后希望各位考生在国考中金榜题名!

热点排行