基于粒子群算法求解求解TSP问题(JAVA)
一、TSP问题
TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。所有的TSP问题都可以用一个图(Graph)来描述:
V={c1, c2, …, ci, …, cn},i = 1,2, …, n,是所有城市的集合.ci表示第i个城市,n为城市的数目;
E={(r, s): r,s∈ V}是所有城市之间连接的集合;
C = {crs: r,s∈ V}是所有城市之间连接的成本度量(一般为城市之间的距离);
如果crs = csr, 那么该TSP问题为对称的,否则为非对称的。
一个TSP问题可以表达为:
求解遍历图G = (V, E, C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。
二、粒子群算法
1、基本思想
粒子群算法简称PSO,它的基本思想是模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
2、粒子公式
在找到这两个最优值时,粒子根据如下的公式来更新自己的速度和新的位置:
v[i] = w * v[i] + c1 * rand() * (pbest[i] - present[i]) + c2 * rand() * (gbest - present[i])
present[i] = present[i] + v[i]
其中v[i]代表第i个粒子的速度,w代表惯性权值,c1和c2表示学习参数,rand()表示在0-1之间的随机数,pbest[i]代表第i个粒子搜索到的最优值,gbest代表整个集群搜索到的最优值,present[i]代表第i个粒子的当前位置。
3、个人见解
截止目前为止,粒子群优化算法大体上可以分为两大类,一类是最初的基本粒子群优化算法,一类是改进后的广义粒子群优化算法,其实PSO最初的设计主要用于处理连续优化问题,如求函数极值,在复杂的组合优化问题上它的应用相当有限,后来经过众多学者的改进才将其应用于求解TSP和单机调度之类的问题。广义粒子群算法模型和遗传算法相当类似,目前网上有关于粒子群算法求解TSP的很多论文或代码都是基于广义粒子群算法的,说简单点就是进化思想,用交叉变异代替了基本粒子群算法的迭代公式,当然他们也还是有粒子群优化的本质思想的,如与全局最优编码交叉,与局部最优编码交叉,变异等都是源自于基本粒子群算法的迭代公式。
三、粒子群优化算法求解TSP问题
关于基本粒子群优化算法的使用,可参考最近这篇文章,自话粒子群算法 ,既然是求解TSP,使用基本的粒子群算法迭代公式肯定是不行的,在这里我也不想写一个与遗传算法差不多的粒子群算法,确实没必要,只要看了解遗传算法,分分钟就能写出来,在这里我想使用一种,比较特别的迭代方式,先来看看它的迭代公式:在这里我不多啰嗦了,想要详细了解,可能你需要看一下这篇论文:http://download.csdn.net/detail/wangqiuyun/6373499 有点古老是吧,没关系,要的是它的思想。
我们使用TSP问题依然来自于tsplib上的att48,这是一个对称TSP问题,城市规模为48,其最优值为10628.其距离计算方法下图所示:
好,下面是具体代码:
四、总结
对于这个实验结果,其实我个人是不能接受的,但是目前我只能把问题归结于那篇论文提出的迭代公式上,不过那论文年代久远,它上面就试了14个点,这里是48个,差距肯定是有的,或许这里再进行一些调整,没准效果会好些,但是目前我本人时间有限,还来不及深入实验,只能让感兴趣的人来进行深入剥解!