hdu 4756 Install Air Conditioning(2013南京网络赛)
题意就是求MST中删去一条边后,次小生成树最大的那颗。注意题中说了“ there are so many wires between two specific dormitories” 。也就是说与0节点(power plant)相连的MST边是不会出故障的,所以要特殊考虑一下所有MST边都跟0节点相连的情况。
删除MST中某条边后的次小生成树用树形dp解决,传送门
我的理解是:删除MST边<u, v>之后, MST被划分成u跟v两个子树,新添加的非MST边必然是连接u跟v两颗子树的原图中的非MST边,这可以用dfs解决。dp[u][v]代表两颗子树的最短距离,用每个点p的非MST边g[p][i]去更新所有的dp[u][v],时间复杂度O(n^2)。
//#pragma comment(linker, "/STACK:1024000000,1024000000")#include<algorithm>#include<iostream>#include<cstring>#include<fstream>#include<sstream>#include<vector>#include<string>#include<cstdio>#include<bitset>#include<queue>#include<stack>#include<cmath>#include<map>#include<set>#define FF(i, a, b) for(int i=a; i<b; i++)#define FD(i, a, b) for(int i=a; i>=b; i--)#define REP(i, n) for(int i=0; i<n; i++)#define CLR(a, b) memset(a, b, sizeof(a))#define debug puts("**debug**")#define LL long long#define PB push_back#define MP make_pair#define eps 1e-10using namespace std;const int maxn = 1010;const double INF = 1e20;int n, T, fa[maxn];double mst, k, x[maxn], y[maxn], g[maxn][maxn], dp[maxn][maxn], d[maxn];bool vis[maxn];vector<int> G[maxn];template <class T> T sqr(T x) { return x*x; }double dist(int i, int j){ return sqrt(sqr(x[i]-x[j]) + sqr(y[i] - y[j]));}void read(){ scanf("%d%lf", &n, &k); REP(i, n) scanf("%lf%lf", &x[i], &y[i]); REP(i, n) { FF(j, i+1, n) g[i][j] = g[j][i] = dist(i, j), dp[i][j] = dp[j][i] = INF; g[i][i] = INF; vis[i] = 0; fa[i] = 0; G[i].clear(); }}void prim(){ REP(i, n) d[i] = g[0][i]; vis[0] = 1; fa[0] = -1; d[0] = INF; mst = 0; FF(i, 1, n) { int pos = 0; FF(j, 1, n) if(!vis[j] && d[pos] > d[j]) pos = j; mst += d[pos]; vis[pos] = 1; //构造MST G[pos].PB(fa[pos]); G[fa[pos]].PB(pos); FF(j, 1, n) if(!vis[j] && g[pos][j] < d[j]) d[j] = g[pos][j], fa[j] = pos; }}//用所有非MST边g[p][i] 更新所有dp[u][v]double dfs(int p, int u, int f){ double ans = INF; REP(i, G[u].size()) { int v = G[u][i]; if(v != f) { double tmp = dfs(p, v, u); ans = min(ans, tmp); dp[u][v] = dp[v][u] = min(dp[u][v], tmp); } } //保证非MST边才能更新 if(p != f) ans = min(ans, g[p][u]); return ans;}double solve(){ REP(i, n) dfs(i, i, -1); //每个点更新一次 //MST中所有跟0节点相连的边是不会出问题的 bool flag = 0; FF(i, 1, n) if(fa[0] != i && fa[i] != 0) flag = 1; if(!flag) return mst * k; double ret = 0; //求MST边删除后的次小生成树的最大值 FF(i, 1, n) FF(j, i+1, n) if(fa[i] == j || fa[j] == i)ret = max(ret, dp[i][j] - g[i][j]); return (mst + ret) * k;}int main(){ scanf("%d", &T); while(T--) { read(); prim(); printf("%.2lf\n", solve()); } return 0;}