mahout贝叶斯算法开发思路(拓展篇)1
首先说明一点,此篇blog解决的问题是就下面的数据如何应用mahout中的贝叶斯算法?(这个问题是在上篇(。。。完结篇)blog最后留的问题,如果想直接使用该工具,可以在mahout贝叶斯算法拓展下载):
usage: <command> [Generic Options] [Job-Specific Options]Generic Options: -archives <paths> comma separated archives to be unarchived on the compute machines. -conf <configuration file> specify an application configuration file -D <property=value> use value for given property -files <paths> comma separated files to be copied to the map reduce cluster -fs <local|namenode:port> specify a namenode -jt <local|jobtracker:port> specify a job tracker -libjars <paths> comma separated jar files to include in the classpath. -tokenCacheFile <tokensFile> name of the file with the tokensJob-Specific Options: --input (-i) input Path to job input directory. --output (-o) output The directory pathname for output. --labelIndex (-li) labelIndex The path to store the label index in --help (-h) Print out help --tempDir tempDir Intermediate output directory --startPhase startPhase First phase to run --endPhase endPhase Last phase to run其中的-li参数是自己加的,其实就是第2步骤中求得的标识的总个数,其他参考AbstractJob默认参数。
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990