HDU2036改革春风吹满地
改革春风吹满地
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7455 Accepted Submission(s): 3738
Problem Description
“ 改革春风吹满地,
不会AC没关系;
实在不行回老家,
还有一亩三分地。
谢谢!(乐队奏乐)”
话说部分学生心态极好,每天就知道游戏,这次考试如此简单的题目,也是云里雾里,而且,还竟然来这么几句打油诗。
好呀,老师的责任就是帮你解决问题,既然想种田,那就分你一块。
这块田位于浙江省温州市苍南县灵溪镇林家铺子村,多边形形状的一块地,原本是linle 的,现在就准备送给你了。不过,任何事情都没有那么简单,你必须首先告诉我这块地到底有多少面积,如果回答正确才能真正得到这块地。
发愁了吧?就是要让你知道,种地也是需要AC知识的!以后还是好好练吧...
Input
输入数据包含多个测试实例,每个测试实例占一行,每行的开始是一个整数n(3<=n<=100),它表示多边形的边数(当然也是顶点数),然后是按照逆时针顺序给出的n个顶点的坐标(x1, y1, x2, y2... xn, yn),为了简化问题,这里的所有坐标都用整数表示。
输入数据中所有的整数都在32位整数范围内,n=0表示数据的结束,不做处理。
Output
对于每个测试实例,请输出对应的多边形面积,结果精确到小数点后一位小数。
每个实例的输出占一行。
Sample Input
3 0 0 1 0 0 1
4 1 0 0 1 -1 0 0 -1
0
Sample Output
0.5
2.0
Author
lcy
Source
ACM程序设计期末考试(2006/06/07)
Recommend
#include <stdio.h>#include <math.h>double p[105][2];/*double l[105];//思路:找一多边形内部点,然后和顶点相连,最后求三角形面积后相加,但这要考虑凹凸多边形问题,以至很麻烦int main(){int n, i;double k1, b1, k2, b2, x, y, area, p1;double a, b, c;while(~scanf("%d", &n), n){area = 0;for(i = 0; i < n; i++){scanf("%lf%lf", &p[i][0], &p[i][1]);}if(p[0][0] - p[2][0] == 0){x = p[0][0];k2 = (p[1][1] - p[n - 1][1]) / (p[1][0] - p[n - 1][0]);b2 = p[1][1] - k2 * p[1][0];y = k2 * x + b2;}else if(p[1][0] - p[n - 1][0] == 0){x = p[1][0];k1 = (p[0][1] - p[2][1]) / (p[0][0] - p[2][0]);b1 = p[0][1] - k1 * p[0][0];y = k1 * x + b1;}else{k1 = (p[0][1] - p[2][1]) / (p[0][0] - p[2][0]);b1 = p[0][1] - k1 * p[0][0];k2 = (p[1][1] - p[n - 1][1]) / (p[1][0] - p[n - 1][0]);b2 = p[1][1] - k2 * p[1][0];x = (b2 - b1) / (k1 - k2);y = k1 * x + b1;}for(i = 0; i < n; i++){l[i] = sqrt((x - p[i][0]) * (x - p[i][0]) + (y - p[i][1]) * (y - p[i][1]));}for(i = 0; i < n - 1; i++){a = l[i];b = l[i + 1];c = sqrt((p[i][0] - p[i + 1][0]) * (p[i][0] - p[i + 1][0]) + (p[i][1] - p[i + 1][1]) * (p[i][1] - p[i + 1][1]));p1 = (a + b + c) / 2;area += sqrt(p1 * (p1 - a) * (p1 - b) * (p1 - c));}a = l[0];b = l[n - 1];c = sqrt((p[0][0] - p[n - 1][0]) * (p[0][0] - p[n - 1][0]) + (p[0][1] - p[n - 1][1]) * (p[0][1] - p[n - 1][1]));p1 = (a + b + c) / 2;area += sqrt(p1 * (p1 - a) * (p1 - b) * (p1 - c));printf("%.1lf\n", area);}return 0;}*///利用以利用多边形求面积公式://S = 0.5 * ( (x0*y1-x1*y0) + (x1*y2-x2*y1) + ... + (xn*y0-x0*yn) )int main(){int n, i;double area, x0, y0;while(~scanf("%d", &n), n){area = 0;for(i = 0; i < n; i++)scanf("%lf%lf", &p[i][0], &p[i][1]);p[n][0]=p[0][0]; p[n][1]=p[0][1];for(i = 1; i <= n; i++){area += p[i - 1][0] * p[i][1] - p[i][0] * p[i - 1][1];}printf("%.1lf\n", area / 2);}return 0;} :?: