首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 平面设计 > 图形图像 >

图像处理之光源退化成效

2012-11-08 
图像处理之光源退化效果基本思想:RGB像素的亮度是由RGB各个分量的大小决定的,分量越大,亮度越大。看上去好

图像处理之光源退化效果

基本思想:

RGB像素的亮度是由RGB各个分量值的大小决定的,分量越大,亮度越大。看上去

好像光照效果越明显,光源退化效果是模拟光照在图像的中心点上,慢慢扩散到周

围,越靠近中心点像素,图像越亮,越远离图像越暗。原理可以说是非常的简单,

只要计算图像中每个像素到中心像素的欧几里德距离,归一化以后得到scale值(0

到1之间)乘以原来的RGB像素值即得到每个像素处理以后的RGB像素值。

效果如下:

图像处理之光源退化成效

关键代码解释:

中心像素点坐标取得:

int centerX = width/2;

int centerY = height/2;

 

任意一个像素点到中心像素的距离计算:

double xx = (centerX - px)*(centerX - px);

double yy = (centerY - py)*(centerY - py);

return (int)Math.sqrt(xx + yy);

 

距离归一化以及衰减因子考虑:

double scale = 1.0 - getDistance(centerX, centerY, col,row)/maxDistance;

for(int i=0; i<factor; i++) {

scale = scale * scale;

}

计算每个像素点的新RGB值:

tr = (int)(scale * tr);

tg = (int)(scale * tg);

tb = (int)(scale * tb);

滤镜源代码如下:

package com.gloomyfish.filter.study;import java.awt.image.BufferedImage;public class SpotlightFilter extends AbstractBufferedImageOp {// attenuation coefficient, default is 1 means line decrease...private int factor;public SpotlightFilter() {factor = 1;}public void setFactor(int coefficient) {this.factor = coefficient;}@Overridepublic BufferedImage filter(BufferedImage src, BufferedImage dest) {int width = src.getWidth();        int height = src.getHeight();        if ( dest == null )            dest = createCompatibleDestImage( src, null );        int[] inPixels = new int[width*height];        int[] outPixels = new int[width*height];        getRGB( src, 0, 0, width, height, inPixels );        int index = 0;        int centerX = width/2;        int centerY = height/2;        double maxDistance = Math.sqrt(centerX * centerX + centerY * centerY);        for(int row=0; row<height; row++) {        int ta = 0, tr = 0, tg = 0, tb = 0;        for(int col=0; col<width; col++) {        index = row * width + col;        ta = (inPixels[index] >> 24) & 0xff;                tr = (inPixels[index] >> 16) & 0xff;                tg = (inPixels[index] >> 8) & 0xff;                tb = inPixels[index] & 0xff;                double scale = 1.0 - getDistance(centerX, centerY, col, row)/maxDistance;                for(int i=0; i<factor; i++) {                scale = scale * scale;                }            tr = (int)(scale * tr);            tg = (int)(scale * tg);            tb = (int)(scale * tb);                                outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;                        }        }        setRGB( dest, 0, 0, width, height, outPixels );        return dest;}private double getDistance(int centerX, int centerY, int px, int py) {double xx = (centerX - px)*(centerX - px);double yy = (centerY - py)*(centerY - py);return (int)Math.sqrt(xx + yy);}}
转载请注明出处

热点排行