[转]笔记:Hibernate性能优化事项(持续更新)
1、针对Oracle数据库而言,Fetch Size 是设定JDBC的Statement读取数据的时候每次从数据库中取出的记录条数,一般设置为30、50、100。Oracle数据库的JDBC驱动默认的Fetch Size=15,设置Fetch Size设置为:30、50,性能会有明显提升,如果继续增大,超出100,性能提升不明显,反而会消耗内存。
即在Hibernate配制文件中进行配制:
<property name="hibernateProperties">
<props>
<prop key="hibernate.dialect">org.hibernate.dialect.Oracle9Dialect</prop>
<prop key="hibernate.show_sql">false</prop>
<!-- Create/update the database tables automatically when the JVM starts up
<prop key="hibernate.hbm2ddl.auto">update</prop> -->
<!-- Turn batching off for better error messages under PostgreSQL
<prop key="hibernate.jdbc.batch_size">100</prop> -->
<prop key="hibernate.jdbc.fetch_size">50</prop>
</props>
</property>
Fetch Size设的越大,读数据库的次数越少,速度越快;Fetch Size越小,读数据库的次数越多,速度越慢。
2、如果是超大的系统,建议生成htm文件。加快页面提升速度。
3、不要把所有的责任推在hibernate上,对代码进行重构,减少对数据库的操作,尽量避免在数据库查询时使用in操作,以及避免递归查询操作,代码质量、系统设计的合理性决定系统性能的高低。
4、 对大数据量查询时,慎用list()或者iterator()返回查询结果,
(1). 使用List()返回结果时,Hibernate会所有查询结果初始化为持久化对象,结果集较大时,会占用很多的处理时间。
(2). 而使用iterator()返回结果时,在每次调用iterator.next()返回对象并使用对象时,Hibernate才调用查询将对应的对象初始化,对于大数据量时,每调用一次查询都会花费较多的时间。当结果集较大,但是含有较大量相同的数据,或者结果集不是全部都会使用时,使用iterator()才有优势。
5、在一对多、多对一的关系中,使用延迟加载机制,会使不少的对象在使用时方会初始化,这样可使得节省内存空间以及减少数据库的负荷,而且若PO中的集合没有被使用时,就可减少互数据库的交互从而减少处理时间。
6、对含有关联的PO(持久化对象)时,若default-cascade="all"或者 “save-update”,新增PO时,请注意对PO中的集合的赋值操作,因为有可能使得多执行一次update操作。
7、 对于大数据量新增、修改、删除操作或者是对大数据量的查询,与数据库的交互次数是决定处理时间的最重要因素,减少交互的次数是提升效率的最好途径,所以在开发过程中,请将show_sql设置为true,深入了解Hibernate的处理过程,尝试不同的方式,可以使得效率提升。尽可能对每个页面的显示,对数据库的操作减少到100----150条以内。越少越好。
?
?
以上是在进行struts+hibernate+spring进行项目开发中,对hibernate性能优化的几点心得。??
?
?
在一个拥有单独业务层的应用中,业务层必须在返回之前,为web层“准备”好其所需的数据集合。这就意味着 业务层应该载入所有表现层/web层所需的数据,并将这些已实例化完毕的数据返回。通常,应用程序应该 为web层所需的每个集合调用Hibernate.initialize()(这个调用必须发生咱session关闭之前); 或者使用带有FETCH从句,或FetchMode.JOIN的Hibernate查询, 事先取得所有的数据集合。如果你在应用中使用了Command模式,代替Session Facade , 那么这项任务将会变得简单的多。
?
你也可以通过merge()或lock()方法,在访问未实例化的集合(或代理)之前, 为先前载入的对象绑定一个新的Session。 显然,Hibernate将不会,也不应该自动完成这些任务,因为这将引入一个特殊的事务语义。
?
有时候,你并不需要完全实例化整个大的集合,仅需要了解它的部分信息(例如其大小)、或者集合的部分内容。
你可以使用集合过滤器得到其集合的大小,而不必实例化整个集合:
( (Integer) s.createFilter( collection, "select count(*)" ).list().get(0) ).intValue()
这里的createFilter()方法也可以被用来有效的抓取集合的部分内容,而无需实例化整个集合:
s.createFilter( lazyCollection, "").setFirstResult(0).setMaxResults(10).list();
?
20.1.5. 使用批量抓取(Using batch fetching)
?
Hibernate可以充分有效的使用批量抓取,也就是说,如果仅一个访问代理(或集合),那么Hibernate将不载入其他未实例化的代理。 批量抓取是延迟查询抓取的优化方案,你可以在两种批量抓取方案之间进行选择:在类级别和集合级别。
类/实体级别的批量抓取很容易理解。假设你在运行时将需要面对下面的问题:你在一个Session中载入了25个 Cat实例,每个Cat实例都拥有一个引用成员owner, 其指向Person,而Person类是代理,同时lazy="true"。 如果你必须遍历整个cats集合,对每个元素调用getOwner()方法,Hibernate将会默认的执行25次SELECT查询, 得到其owner的代理对象。这时,你可以通过在映射文件的Person属性,显式声明batch-size,改变其行为:
<class name="Person" batch-size="10">...</class>
随之,Hibernate将只需要执行三次查询,分别为10、10、 5。
你也可以在集合级别定义批量抓取。例如,如果每个Person都拥有一个延迟载入的Cats集合, 现在,Sesssion中载入了10个person对象,遍历person集合将会引起10次SELECT查询, 每次查询都会调用getCats()方法。如果你在Person的映射定义部分,允许对cats批量抓取, 那么,Hibernate将可以预先抓取整个集合。请看例子:
<class name="Person"> <set name="cats" batch-size="3"> ... </set></class>
如果整个的batch-size是3(笔误?),那么Hibernate将会分四次执行SELECT查询, 按照3、3、3、1的大小分别载入数据。这里的每次载入的数据量还具体依赖于当前Session中未实例化集合的个数。
如果你的模型中有嵌套的树状结构,例如典型的帐单-原料结构(bill-of-materials pattern),集合的批量抓取是非常有用的。 (尽管在更多情况下对树进行读取时,嵌套集合(nested set)或原料路径(materialized path)(××) 是更好的解决方法。)
?
20.1.6. 使用子查询抓取(Using subselect fetching)
?
假若一个延迟集合或单值代理需要抓取,Hibernate会使用一个subselect重新运行原来的查询,一次性读入所有的实例。这和批量抓取的实现方法是一样的,不会有破碎的加载。
?
20.1.7. 使用延迟属性抓取(Using lazy property fetching)
?
Hibernate3对单独的属性支持延迟抓取,这项优化技术也被称为组抓取(fetch groups)。 请注意,该技术更多的属于市场特性。在实际应用中,优化行读取比优化列读取更重要。但是,仅载入类的部分属性在某些特定情况下会有用,例如在原有表中拥有几百列数据、数据模型无法改动的情况下。
可以在映射文件中对特定的属性设置lazy,定义该属性为延迟载入。
<class name="Document"> <id name="id"> <generator not-null="true" length="50"/> <property name="summary" not-null="true" length="200" lazy="true"/> <property name="text" not-null="true" length="2000" lazy="true"/></class>
属性的延迟载入要求在其代码构建时加入二进制指示指令(bytecode instrumentation),如果你的持久类代码中未含有这些指令, Hibernate将会忽略这些属性的延迟设置,仍然将其直接载入。
你可以在Ant的Task中,进行如下定义,对持久类代码加入“二进制指令。”
<target name="instrument" depends="compile"> <taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask"> <classpath path="${jar.path}"/> <classpath path="${classes.dir}"/> <classpath refid="lib.class.path"/> </taskdef> <instrument verbose="true"> <fileset dir="${testclasses.dir}/org/hibernate/auction/model"> <include name="*.class"/> </fileset> </instrument></target>
还有一种可以优化的方法,它使用HQL或条件查询的投影(projection)特性,可以避免读取非必要的列, 这一点至少对只读事务是非常有用的。它无需在代码构建时“二进制指令”处理,因此是一个更加值得选择的解决方法。
有时你需要在HQL中通过抓取所有属性,强行抓取所有内容。
?
20.2. 二级缓存(The Second Level Cache)
?
Hibernate的Session在事务级别进行持久化数据的缓存操作。 当然,也有可能分别为每个类(或集合),配置集群、或JVM级别(SessionFactory级别)的缓存。 你甚至可以为之插入一个集群的缓存。注意,缓存永远不知道其他应用程序对持久化仓库(数据库)可能进行的修改 (即使可以将缓存数据设定为定期失效)。
默认情况下,Hibernate使用EHCache进行JVM级别的缓存(目前,Hibernate已经废弃了对JCS的支持,未来版本中将会去掉它)。 你可以通过设置hibernate.cache.provider_class属性,指定其他的缓存策略, 该缓存策略必须实现org.hibernate.cache.CacheProvider接口。
?
表 20.1. 缓存策略提供商(Cache Providers)
Cache Provider class Type Cluster Safe Query Cache Supported Hashtable (not intended for production use)org.hibernate.cache.HashtableCacheProvidermemory yesEHCacheorg.hibernate.cache.EhCacheProvidermemory, disk yesOSCacheorg.hibernate.cache.OSCacheProvidermemory, disk yesSwarmCacheorg.hibernate.cache.SwarmCacheProviderclustered (ip multicast)yes (clustered invalidation) JBoss TreeCacheorg.hibernate.cache.TreeCacheProviderclustered (ip multicast), transactionalyes (replication)yes (clock sync req.)?
20.2.1. 缓存映射(Cache mappings)
类或者集合映射的“<cache>元素”可以有下列形式:
<cache usage="transactional|read-write|nonstrict-read-write|read-only" (1)/>
?
?
20.2.3. 策略:读/写缓存(Strategy: read/write)
?
如果应用程序需要更新数据,那么使用读/写缓存 比较合适。 如果应用程序要求“序列化事务”的隔离级别(serializable transaction isolation level),那么就决不能使用这种缓存策略。 如果在JTA环境中使用缓存,你必须指定hibernate.transaction.manager_lookup_class属性的值, 通过它,Hibernate才能知道该应用程序中JTA的TransactionManager的具体策略。 在其它环境中,你必须保证在Session.close()、或Session.disconnect()调用前, 整个事务已经结束。 如果你想在集群环境中使用此策略,你必须保证底层的缓存实现支持锁定(locking)。Hibernate内置的缓存策略并不支持锁定功能。
<class name="eg.Cat" .... > <cache usage="read-write"/> .... <set name="kittens" ... > <cache usage="read-write"/> .... </set></class>
?
20.2.4. 策略:非严格读/写缓存(Strategy: nonstrict read/write)
?
如果应用程序只偶尔需要更新数据(也就是说,两个事务同时更新同一记录的情况很不常见),也不需要十分严格的事务隔离, 那么比较适合使用非严格读/写缓存策略。如果在JTA环境中使用该策略, 你必须为其指定hibernate.transaction.manager_lookup_class属性的值, 在其它环境中,你必须保证在Session.close()、或Session.disconnect()调用前, 整个事务已经结束。
?
20.2.5. 策略:事务缓存(transactional)
?
Hibernate的事务缓存策略提供了全事务的缓存支持, 例如对JBoss TreeCache的支持。这样的缓存只能用于JTA环境中,你必须指定 为其hibernate.transaction.manager_lookup_class属性。
没有一种缓存提供商能够支持上列的所有缓存并发策略。下表中列出了各种提供器、及其各自适用的并发策略。
?
表 20.2. 各种缓存提供商对缓存并发策略的支持情况(Cache Concurrency Strategy Support)
Cache read-only nonstrict-read-write read-write transactional Hashtable (not intended for production use)yesyesyes EHCacheyesyesyes OSCacheyesyesyes SwarmCacheyesyes JBoss TreeCacheyes yes?
20.3. 管理缓存(Managing the caches)
?
无论何时,当你给save()、update()或 saveOrUpdate()方法传递一个对象时,或使用load()、 get()、list()、iterate() 或scroll()方法获得一个对象时, 该对象都将被加入到Session的内部缓存中。
当随后flush()方法被调用时,对象的状态会和数据库取得同步。 如果你不希望此同步操作发生,或者你正处理大量对象、需要对有效管理内存时,你可以调用evict() 方法,从一级缓存中去掉这些对象及其集合。
ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result setwhile ( cats.next() ) { Cat cat = (Cat) cats.get(0); doSomethingWithACat(cat); sess.evict(cat);}
Session还提供了一个contains()方法,用来判断某个实例是否处于当前session的缓存中。
如若要把所有的对象从session缓存中彻底清除,则需要调用Session.clear()。
对于二级缓存来说,在SessionFactory中定义了许多方法, 清除缓存中实例、整个类、集合实例或者整个集合。
sessionFactory.evict(Cat.class, catId); //evict a particular CatsessionFactory.evict(Cat.class); //evict all CatssessionFactory.evictCollection("Cat.kittens", catId); //evict a particular collection of kittenssessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections
CacheMode参数用于控制具体的Session如何与二级缓存进行交互。
?
?
CacheMode.NORMAL - 从二级缓存中读、写数据。
?
CacheMode.GET - 从二级缓存中读取数据,仅在数据更新时对二级缓存写数据。
?
CacheMode.PUT - 仅向二级缓存写数据,但不从二级缓存中读数据。
?
CacheMode.REFRESH - 仅向二级缓存写数据,但不从二级缓存中读数据。通过 hibernate.cache.use_minimal_puts的设置,强制二级缓存从数据库中读取数据,刷新缓存内容。
?
如若需要查看二级缓存或查询缓存区域的内容,你可以使用统计(Statistics) API。
Map cacheEntries = sessionFactory.getStatistics() .getSecondLevelCacheStatistics(regionName) .getEntries();
此时,你必须手工打开统计选项。可选的,你可以让Hibernate更人工可读的方式维护缓存内容。
hibernate.generate_statistics truehibernate.cache.use_structured_entries true
?
20.4. 查询缓存(The Query Cache)
?
查询的结果集也可以被缓存。只有当经常使用同样的参数进行查询时,这才会有些用处。 要使用查询缓存,首先你必须打开它:
hibernate.cache.use_query_cache true
该设置将会创建两个缓存区域 - 一个用于保存查询结果集(org.hibernate.cache.StandardQueryCache); 另一个则用于保存最近查询的一系列表的时间戳(org.hibernate.cache.UpdateTimestampsCache)。 请注意:在查询缓存中,它并不缓存结果集中所包含的实体的确切状态;它只缓存这些实体的标识符属性的值、以及各值类型的结果。 所以查询缓存通常会和二级缓存一起使用。
绝大多数的查询并不能从查询缓存中受益,所以Hibernate默认是不进行查询缓存的。如若需要进行缓存,请调用 Query.setCacheable(true)方法。这个调用会让查询在执行过程中时先从缓存中查找结果, 并将自己的结果集放到缓存中去。
如果你要对查询缓存的失效政策进行精确的控制,你必须调用Query.setCacheRegion()方法, 为每个查询指定其命名的缓存区域。
List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger") .setEntity("blogger", blogger) .setMaxResults(15) .setCacheable(true) .setCacheRegion("frontpages") .list();
如果查询需要强行刷新其查询缓存区域,那么你应该调用Query.setCacheMode(CacheMode.REFRESH)方法。 这对在其他进程中修改底层数据(例如,不通过Hibernate修改数据),或对那些需要选择性更新特定查询结果集的情况特别有用。 这是对SessionFactory.evictQueries()的更为有效的替代方案,同样可以清除查询缓存区域。
?
20.5. 理解集合性能(Understanding Collection performance)
?
前面我们已经对集合进行了足够的讨论。本段中,我们将着重讲述集合在运行时的事宜。
?
20.5.1. 分类(Taxonomy)
?
Hibernate定义了三种基本类型的集合:
?
?
值数据集合
?
一对多关联
?
多对多关联
?
这个分类是区分了不同的表和外键关系类型,但是它没有告诉我们关系模型的所有内容。 要完全理解他们的关系结构和性能特点,我们必须同时考虑“用于Hibernate更新或删除集合行数据的主键的结构”。 因此得到了如下的分类:
?
?
有序集合类
?
集合(sets)
?
包(bags)
?
所有的有序集合类(maps, lists, arrays)都拥有一个由<key>和 <index>组成的主键。 这种情况下集合类的更新是非常高效的——主键已经被有效的索引,因此当Hibernate试图更新或删除一行时,可以迅速找到该行数据。
集合(sets)的主键由<key>和其他元素字段构成。 对于有些元素类型来说,这很低效,特别是组合元素或者大文本、大二进制字段; 数据库可能无法有效的对复杂的主键进行索引。 另一方面,对于一对多、多对多关联,特别是合成的标识符来说,集合也可以达到同样的高效性能。( 附注:如果你希望SchemaExport为你的<set>创建主键, 你必须把所有的字段都声明为not-null="true"。)
<idbag>映射定义了代理键,因此它总是可以很高效的被更新。事实上, <idbag>拥有着最好的性能表现。
Bag是最差的。因为bag允许重复的元素值,也没有索引字段,因此不可能定义主键。 Hibernate无法判断出重复的行。当这种集合被更改时,Hibernate将会先完整地移除 (通过一个(in a single DELETE))整个集合,然后再重新创建整个集合。 因此Bag是非常低效的。
请注意:对于一对多关联来说,“主键”很可能并不是数据库表的物理主键。 但就算在此情况下,上面的分类仍然是有用的。(它仍然反映了Hibernate在集合的各数据行中是如何进行“定位”的。)
?
20.5.2. Lists, maps 和sets用于更新效率最高
?
根据我们上面的讨论,显然有序集合类型和大多数set都可以在增加、删除、修改元素中拥有最好的性能。
可论证的是对于多对多关联、值数据集合而言,有序集合类比集合(set)有一个好处。因为Set的内在结构, 如果“改变”了一个元素,Hibernate并不会更新(UPDATE)这一行。 对于Set来说,只有在插入(INSERT)和删除(DELETE) 操作时“改变”才有效。再次强调:这段讨论对“一对多关联”并不适用。
注意到数组无法延迟载入,我们可以得出结论,list, map和idbags是最高效的(非反向)集合类型,set则紧随其后。 在Hibernate中,set应该时最通用的集合类型,这时因为“set”的语义在关系模型中是最自然的。
但是,在设计良好的Hibernate领域模型中,我们通常可以看到更多的集合事实上是带有inverse="true" 的一对多的关联。对于这些关联,更新操作将会在多对一的这一端进行处理。因此对于此类情况,无需考虑其集合的更新性能。
?
20.5.3. Bag和list是反向集合类中效率最高的
?
在把bag扔进水沟之前,你必须了解,在一种情况下,bag的性能(包括list)要比set高得多: 对于指明了inverse="true"的集合类(比如说,标准的双向的一对多关联), 我们可以在未初始化(fetch)包元素的情况下直接向bag或list添加新元素! 这是因为Collection.add())或者Collection.addAll() 方法 对bag或者List总是返回true(这点与与Set不同)。因此对于下面的相同代码来说,速度会快得多。
Parent p = (Parent) sess.load(Parent.class, id); Child c = new Child(); c.setParent(p); p.getChildren().add(c); //no need to fetch the collection! sess.flush();
?
20.5.4. 一次性删除(One shot delete)
?
偶尔的,逐个删除集合类中的元素是相当低效的。Hibernate并没那么笨, 如果你想要把整个集合都删除(比如说调用list.clear()),Hibernate只需要一个DELETE就搞定了。
假设我们在一个长度为20的集合类中新增加了一个元素,然后再删除两个。 Hibernate会安排一条INSERT语句和两条DELETE语句(除非集合类是一个bag)。 这当然是显而易见的。
但是,假设我们删除了18个数据,只剩下2个,然后新增3个。则有两种处理方式:
?
?
逐一的删除这18个数据,再新增三个;
?
删除整个集合类(只用一句DELETE语句),然后增加5个数据。
?
Hibernate还没那么聪明,知道第二种选择可能会比较快。 (也许让Hibernate不这么聪明也是好事,否则可能会引发意外的“数据库触发器”之类的问题。)
幸运的是,你可以强制使用第二种策略。你需要取消原来的整个集合类(解除其引用), 然后再返回一个新的实例化的集合类,只包含需要的元素。有些时候这是非常有用的。
显然,一次性删除并不适用于被映射为inverse="true"的集合。
?
20.6. 监测性能(Monitoring performance)
?
没有监测和性能参数而进行优化是毫无意义的。Hibernate为其内部操作提供了一系列的示意图,因此可以从 每个SessionFactory抓取其统计数据。
?
20.6.1. 监测SessionFactory
?
你可以有两种方式访问SessionFactory的数据记录,第一种就是自己直接调用 sessionFactory.getStatistics()方法读取、显示统计数据。
此外,如果你打开StatisticsService MBean选项,那么Hibernate则可以使用JMX技术 发布其数据记录。你可以让应用中所有的SessionFactory同时共享一个MBean,也可以每个 SessionFactory分配一个MBean。下面的代码即是其演示代码:
// MBean service registration for a specific SessionFactoryHashtable tb = new Hashtable();tb.put("type", "statistics");tb.put("sessionFactory", "myFinancialApp");ObjectName on = new ObjectName("hibernate", tb); // MBean object nameStatisticsService stats = new StatisticsService(); // MBean implementationstats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactoryserver.registerMBean(stats, on); // Register the Mbean on the server
// MBean service registration for all SessionFactory'sHashtable tb = new Hashtable();tb.put("type", "statistics");tb.put("sessionFactory", "all");ObjectName on = new ObjectName("hibernate", tb); // MBean object nameStatisticsService stats = new StatisticsService(); // MBean implementationserver.registerMBean(stats, on); // Register the MBean on the server
TODO:仍需要说明的是:在第一个例子中,我们直接得到和使用MBean;而在第二个例子中,在使用MBean之前 我们则需要给出SessionFactory的JNDI名,使用hibernateStatsBean.setSessionFactoryJNDIName("my/JNDI/Name") 得到SessionFactory,然后将MBean保存于其中。
你可以通过以下方法打开或关闭SessionFactory的监测功能:
?
?
在配置期间,将hibernate.generate_statistics设置为true或false;
?
?
?
在运行期间,则可以可以通过sf.getStatistics().setStatisticsEnabled(true) 或hibernateStatsBean.setStatisticsEnabled(true)
?
你也可以在程序中调用clear()方法重置统计数据,调用logSummary() 在日志中记录(info级别)其总结。
?
20.6.2. 数据记录(Metrics)
?
Hibernate提供了一系列数据记录,其记录的内容包括从最基本的信息到与具体场景的特殊信息。所有的测量值都可以由 Statistics接口进行访问,主要分为三类:
?
?
使用Session的普通数据记录,例如打开的Session的个数、取得的JDBC的连接数等;
?
实体、集合、查询、缓存等内容的统一数据记录
?
和具体实体、集合、查询、缓存相关的详细数据记录
?
例如:你可以检查缓存的命中成功次数,缓存的命中失败次数,实体、集合和查询的使用概率,查询的平均时间等。请注意 Java中时间的近似精度是毫秒。Hibernate的数据精度和具体的JVM有关,在有些平台上其精度甚至只能精确到10秒。
你可以直接使用getter方法得到全局数据记录(例如,和具体的实体、集合、缓存区无关的数据),你也可以在具体查询中通过标记实体名、 或HQL、SQL语句得到某实体的数据记录。请参考Statistics、EntityStatistics、 CollectionStatistics、SecondLevelCacheStatistics、 和QueryStatistics的API文档以抓取更多信息。下面的代码则是个简单的例子:
Statistics stats = HibernateUtil.sessionFactory.getStatistics();double queryCacheHitCount = stats.getQueryCacheHitCount();double queryCacheMissCount = stats.getQueryCacheMissCount();double queryCacheHitRatio = queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);log.info("Query Hit ratio:" + queryCacheHitRatio);EntityStatistics entityStats = stats.getEntityStatistics( Cat.class.getName() );long changes = entityStats.getInsertCount() + entityStats.getUpdateCount() + entityStats.getDeleteCount();log.info(Cat.class.getName() + " changed " + changes + "times" );
如果你想得到所有实体、集合、查询和缓存区的数据,你可以通过以下方法获得实体、集合、查询和缓存区列表: getQueries()、getEntityNames()、 getCollectionRoleNames()和 getSecondLevelCacheRegionNames()。
?
?
?
?
?