首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

用分数模式精确表达浮点数

2012-09-17 
用分数形式精确表达浮点数学过计算机编程的就知道,在计算机中,浮点数是不可能用浮点数精确的表达的,如果你

用分数形式精确表达浮点数

学过计算机编程的就知道,在计算机中,浮点数是不可能用浮点数精确的表达的,如果你需要精确的表达这个小数,我们最好是用分数的形式来表示,而且有限小数或无限小数都是可以转化为分数的形式。比如下面的几个小数:

0.3333(3)  = 1/3的(其中括号中的数字是表示循环节)

0.3 = 3 / 10

0.25 = 1 / 4

0. 285714(285714) = 2 / 7

为了简化编程,在这里,我们假定输入的数据都是以0.开始的,没有负数。

(1)、对于有限小数的情况很好分析,我们只要得到小数的位数n,然后用这个小数除以10^n就能得到

比如小数形式为0.a1a2a3a4...an = a1a2a3a4....an  / 10^n然后化简为最简分式就能得到。

(2)、对于无限小数,情况要复杂许多,假定无限小数为  0.a1a2....an(b1b2....bm),我们做如下转换有

X = 0.a1a2....an(b1b2....bm)

X * 10^n=a1a2....an + 0. b1b2....bm

设Y = 0. b1b2....bm有

10^m * Y = b1b2....bm + 0.b1b2....bm

=b1b2....bm + Y

所以Y = b1b2....bm / (10^m - 1)带入上面得到

X = (a1a2....an + Y) / 10^n  = ((a1a2....an) * (10^m - 1) + (b1b2....bm)) / ((10^m - 1) * 10^n)

由此我们可以得到无限小数的精确表达式,下面就是代码实现:

#include <iostream>#include <string>using namespace std;unsigned long long GCD(unsigned long long a, unsigned long long b);/*** author: w397090770* Date: 2012.08.37* Email:wyphao.2007@163.com* 仅用于学习交流,转载请注明这些标识。**/void floatPrecisionExpress(string numberStr){//寻找 ( string::size_type start = 0;//寻找 ) string::size_type end = 0;//标记是否找到 ( 符号 bool isFind = false;//记录字符串的长度 int len = 0;int m = 0, n = 0;//分子,分母 unsigned long long molecular = 0, denominator = 1;int i = 0;//unsigned long long gcd = 1;start = numberStr.find('(', 0);end = numberStr.find(')', 0);//只有找到 ( 和 ) 才是对的,要么都不找到,找到一个地情况下是错误的,直接返回//当然我这里假设了用户输入的是0.XXXX格式的字符串,也就是一定是以0.开头的,//不考虑以别的开始的 if(start == string::npos && end == string::npos){isFind = false; }else if(start != string::npos && end != string::npos){isFind = true; }else{cerr << "Input Error!" << endl;return;}//有限小数 if(!isFind) { len = numberStr.length(); n = len - 2;//2是除去 0. //计算分子 for(i = 2; i < len; i++){ molecular = molecular * 10 + numberStr[i] - '0'; } //cout << molecular << endl; //计算分母 for(i = 0; i < n; i++){ denominator *= 10; } //cout << molecular << "\n" << denominator << endl;//将分子、分母化简为最简式,得到两数的最大公约数 gcd= GCD(molecular, denominator); cout << "浮点数" << numberStr << "的分数精确表示为: " << molecular / gcd << "/" << denominator / gcd << endl; }else{n = start - 2;//2是除去 0.m = end - start - 1;//cout << n << "\t" << m << endl;unsigned long long temp1 = 0, temp2 = 0, temp3 = 1, temp4 = 1;for(i = 2; i < start; i++){temp1 = temp1 * 10 + numberStr[i] - '0';}for(i = start + 1; i < end; i++){temp2 = temp2 * 10 + numberStr[i] - '0';}//cout << temp1 << "\t" << temp2 << endl;for(i = 0; i < n; i++){ temp3 *= 10; } for(i = 0; i < m; i++){ temp4 *= 10; } //cout << temp1 << "\t" << temp2 << "\t" << temp3 << "\t" << temp4 << endl; molecular = temp1 * (temp4 - 1) + temp2; denominator = (temp4 - 1) * temp3; gcd= GCD(molecular, denominator); //cout << gcd << endl; cout << "浮点数" << numberStr << "的分数精确表示为: " << molecular / gcd << "/" << denominator / gcd << endl; } }unsigned long long GCD(unsigned long long a, unsigned long long b){if(a < b){return GCD(b, a);}if(b == 0){return a;}else{if(a & 0x1){//奇数 if(b & 0x1){return GCD(b, a - b); }else{return GCD(a, b >> 1);}} else{if(b & 0x1){return GCD(a >> 1, b);}else{return GCD(a >> 1, b >> 1) << 1;}}}}int main(){floatPrecisionExpress("0.285714(285714)");floatPrecisionExpress("0.33(3)");floatPrecisionExpress("0.25");floatPrecisionExpress("0.30");floatPrecisionExpress("0.3(000)");floatPrecisionExpress("0.3333(3333)");return 0;}

程序运行结果:
用分数模式精确表达浮点数

住:转载
http://blog.csdn.net/w397090770/article/details/7912681

热点排行