首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 开发语言 > 编程 >

雌函数

2012-08-26 
母函数(原文:http://www.wutianqi.com/?p596)(以下内容部分引至杭电ACM课件和维基百科)在数学中,某个序列

母函数

(原文:http://www.wutianqi.com/?p=596)

(以下内容部分引至杭电ACM课件和维基百科)

在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法

母函数可分为很多种,包括普通母函数指数母函数L级数贝尔级数狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。

这里先给出两句话,不懂的可以等看完这篇文章再回过头来看:

"把组合问题的加法法则和幂级数的t的乘幂的相加对应起来"

"母函数的思想很简单—就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造


由此可以看出:

1. x的系数是a1,a2,…an的单个组合的全体。

2. x2的系数是a1,a2,…a2的两个组合的全体。

………

n. xn的系数是a1,a2,….an的n个组合的全体(只有1个)。

由此得到

母函数的定义:

对于序列a0,a1,a2,…构造一函数:

称函数G(x)是序列a0,a1,a2,…的母函数

这里先给出2个例子,等会再结合题目分析:

第一种:

 

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案? 

考虑用母函数来接吻这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:

1个1克的砝码可以用函数1+x表示,

1个2克的砝码可以用函数1+x2表示,

1个3克的砝码可以用函数1+x3表示,

1个4克的砝码可以用函数1+x4表示,

上面这四个式子懂吗?

我们拿1+x2来说,前面已经说过,x表示砝码,x的指数表示重量,即这里就是一个质量为2的砝码,那么前面的1表示什么?1代表重量为2的砝码数量为0个。(理解!)

不知道大家理解没,我们这里结合前面那句话:

"把组合问题的加法法则和幂级数的t的乘幂的相加对应起来"

1+x2表示了两种情况:1表示质量为2的砝码取0个的情况,x2表示质量为2的砝码取1个的情况。

这里说下各项系数的意义:

在x前面的系数a表示相应质量的砝码取a个,而1就表示相应砝码取0个,这里可不能简单的认为相应砝码取0个就该是0*x2(想下为何?结合数学式子)。

Tanky Woo 的程序人生:http://www.wutianqi.com/

 

所以,前面说的那句话的意义大家可以理解了吧?

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x2)(1+x3)(1+x4)

=(1+x+x2+x3)(1+x3+x4+x7)

=1+x+x2+2x3+2x4+2x5+2x6+2x7+x8+x9+x10 

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

    例如右端有2x5 项,即称出5克的方案有2:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

    故称出6克的方案有2,称出10克的方案有1 。

接着上面,接下来是第二种情况:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

以展开后的x4为例,其系数为4,即4拆分成1、2、3之和的拆分数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

这里再引出两个概念整数拆分和拆分数:

 

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。

整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数。 

现在以上面的第二种情况每种种类个数无限为例,给出模板

for(i=0;i<26;i++){for(j=0;j<=50;j++)if(c1[j])for(k=0;k+j<=50&&k<=a[i]*b[i];k+=b[i])//关键c2[k+j]+=c1[j];for(j=0;j<=50;j++){                c1[j]=c2[j];                c2[j]=0;}}如hdu1028,for(i=2;i<=n;i++){for(j=0;j<=n;j++)for(k=0;k+j<=n;k+=i)//关键{b[k+j]+=a[j];}for(j=0;j<=n;j++){a[j]=b[j];b[j]=0;}}


注:根据题意,仔细分析,建立关系。


热点排行