Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归、多参数线性回归和 逻辑回归的总结版。旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍。
本讲内容:
Matlab 实现各种回归函数
=========================
基本模型
Y=θ0+θ1X1型---线性回归(直线拟合)
解决过拟合问题---Regularization
Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)
=========================在解决拟合问题的解决之前,我们首先回忆一下线性回归和逻辑回归的基本模型。
设待拟合参数 θn*1 和输入参数[ xm*n, ym*1 ] 。
对于各类拟合我们都要根据梯度下降的算法,给出两部分:
① cost function(指出真实值y与拟合值h<hypothesis>之间的距离):给出cost function 的表达式,每次迭代保证cost function的量减小;给出梯度gradient,即cost function对每一个参数θ的求导结果。
function [ jVal,gradient ] = costFunction ( theta )
② Gradient_descent(主函数):用来运行梯度下降算法,调用上面的cost function进行不断迭代,直到最大迭代次数达到给定标准或者cost function返回值不再减小。
function [optTheta,functionVal,exitFlag]=Gradient_descent( )
线性回归:拟合方程为hθ(x)=θ0x0+θ1x1+…+θnxn,当然也可以有xn的幂次方作为线性回归项(如),这与普通意义上的线性不同,而是类似多项式的概念。
其cost function 为:
逻辑回归:拟合方程为hθ(x)=1/(1+e^(θTx)),其cost function 为:
cost function对各θj的求导请自行求取,看第三章最后一图,或者参见后文代码。
后面,我们分别对几个模型方程进行拟合,给出代码,并用matlab中的fit函数进行验证。
在Matlab 线性拟合 & 非线性拟合中我们已经讲过如何用matlab自带函数fit进行直线和曲线的拟合,非常实用。而这里我们是进行ML课程的学习,因此研究如何利用前面讲到的梯度下降法(gradient descent)进行拟合。
function PlotFunc( xstart,xend )%PLOTFUNC Summary of this function goes here% draw original data and the fitted %===================cost function 2====linear regression%original datax1=[1;2;3;4];y1=[1.1;2.2;2.7;3.8];%plot(x1,y1,'ro-','MarkerSize',10);plot(x1,y1,'rx','MarkerSize',10);hold on;%fitted line - 拟合曲线x_co=xstart:0.1:xend;y_co=0.3+0.86*x_co;%plot(x_co,y_co,'g');plot(x_co,y_co);hold off;end
在每次迭代中,按照gradient descent的方法更新参数θ:θ(i)-=gradient(i),其中gradient(i)是J(θ)对θi求导的函数式,在此例中就有gradient(1)=2*(theta(1)-5), gradient(2)=2*(theta(2)-5)。
函数costFunction, 定义jVal=J(θ)和对两个θ的gradient:
==============================
Reference:
1. http://blog.csdn.net/abcjennifer/article/details/76915712.http://blog.csdn.net/abcjennifer/article/details/77007723.http://blog.csdn.net/abcjennifer/article/details/77162814.http://blog.csdn.net/abcjennifer/article/details/7684836