首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > 其他教程 > 共享软件 >

:翻译下文,能翻多少是多少(2篇文章)

2012-03-27 
求助:翻译下文,能翻多少是多少(2篇文章)Segmentationofpageimageshavingartifactsofphotocopyingandscanni

求助:翻译下文,能翻多少是多少(2篇文章)
Segmentation     of   page   images   having   artifacts   of   photocopying   and   scanning  
  L.   Cinque   ,     ,   a,   S.   Levialdia,   L.   Lombardib   and   S.   Tanimotoc  
a   Dipartimento   di   Scienze   dell 'Informazione,   University   of   Rome   “La   Sapienza”,   Via   Salaria   113,   00198   Rome,   Italy
b   Dipartimento   di   Informatica   e   Sistemistica,   University   of   Pavia,   Via   Ferrata   1,   27100   Pavia,   Italy
c   Department   of   Computer   Sci.   and   Engineering,   Box   352350,   University   of   Washington,   Seattle,   WA   98195,   USA  
Received   18   June   1999;   revised   16   February   2001;   accepted   26   February   2001   Available   online   11   February   2002.  


Abstract  
The   analysis   of   scanned   documents   is   important   in   the   construction   of   digital   libraries   and   paperless   offices.   One   significant   challenge   is   coping   with   artifacts   of   photocopying   and   scanning.   We   present   a   series   of   simple   techniques   for   handling   these   difficulties.   Using   125   images   of   the   University   of   Washington   scanned   documents   database,   we   demonstrate   the   effectiveness   of   these   methods   in   preparing   the   images   for     segmentation     by   a   multiresolution   algorithm.  
Author   Keywords:   Document   analysis;   Artifact   elimination;     Segmentation   ;   Print-through;   Marginal   artifact;   Partial   extra   page;   Digital   library  


Article   Outline  
1.   Introduction  
1.1.   General   motivation  
1.2.   Problem   description
2.   Previous   work  
3.   Processing   methods  
3.1.   Eliminating   print-through
Algorithm   1—[Treatment   of   print-through]  
3.2.   Marginal   artifacts   and   partial   extra   pages
Algorithm   2—[Treatment   of   marginal   artifacts   and   partial   extra   pages]  
4.   Multiresolution   segmentation   method  
4.1.   Phase   1:   construction   of   feature   pyramids  
4.2.   Phase   2:   classification   of   regions
5.   Experimental   results   and   discussion  
5.1.   Computational   considerations
6.   Conclusions  
References  
Vitae


1.   Introduction  
1.1.   General   motivation  
Online   digital   libraries   can   provide   improved   distribution   of   information   and   more   flexible   access   via   search   algorithms   than   can   traditional   print   libraries.   However,   adding   existing   print   materials   to   electronic   libraries   is   a   costly,   slow   process   unless   good   automated   procedures   can   be   developed.   After   academic   journal   articles   have   been   photocopied   and/or   scanned   from   their   bound,   printed   versions,   various   artifacts   have   often   been   introduced   into   the   images   that   make   further   analysis   difficult.   Either   these   artifacts   need   to   be   removed   before   further   processing,   or   special   considerations   must   be   given   to   the   following   processing   steps   to   make   them   tolerant   of   the   artifacts.   We   addressed   the   problem   of   artifacts   by   developing   means   to   reduce   and/or   eliminate   them   from   the   scanned   document   images   prior   to   segmentation.  


1.2.   Problem   description  
Print-through   is   caused   when   the   printing   on   one   side   of   the   paper   is   visible   in   the   copy   or   scan   of   the   other   side.   It   can   cause   a   page   segmentation   algorithm   to   falsely   conclude   that   a   page   contains   a   photograph   when   it   actually   contains   only   text.  
Marginal   artifacts   are   caused   by   several   phenomena   in   copying   and   scanning:   (1)   curvature   of   the   page   away   from   the   glass   near   the   binding   of   the   publication,   (2)   imaging   the   edges   of   the   pages   behind   the   one   being   scanned,   due   to   skew   in   the   pages   when   the   publication   is   open,   (3)   imaging   the   void   beyond   the   boundary   of   the   page,   or   (4)   imaging   the   cover   of   the   scanner   or   copier   beyond   the   boundary   of   the   page.   Another   troublesome   effect   is   the   presence   of   a   partial   extra   page   when   the   copying   or   scanning   process   captures   part   of   the   page   facing   the   one   of   interest.  
These   artifacts   typically   give   rise   either   to   misinterpretations   of   regions   in   subsequent   segmentation   or   correct   identification   of   regions   that   are   not   part   of   the   page   of   interest   and   therefore   are   unwanted.  
The   problem   is   to   develop   means   of   eliminating   the   unwanted   artifacts   in   such   a   way   that   a   subsequent   segmentation   process   works   correctly.   Furthermore,   the   method   should   be   validated   on   a   large   and   realistic   database   of   document   images.  
This   paper   is   organized   as   follows:   In   Section   2   we   conduct   a   survey   of   related   literature.   In   Section   3   the   segmentation   algorithms   that   we   developed   are   described.   In   Section   4   we   outline   our   two   phases   of   the   pyramidal   implementation   of   the   proposed   algorithms.   In   Section   5   we   report   experimental   results   and   provide   a   detailed   discussion.   Finally   in   Section   6   we   give   our   conclusions.  
2.   Previous   work  
Several   algorithms   for   page   segmentation   have   been   proposed   in   the   literature.   These   algorithms   can   be   categorized   into   three   classes:   bottom–up   approaches,   top–down   approaches   and   hybrid   approaches.  


Tipical   bottom–up   algorithms   are   the   Docstrum   algorithm   of   O’Gorman   [1],   the   run-length   smearing   algorithm   of   Wahl   et   al.   [2],   the   Voronoi   diagram-based   algorithm   of   Kise   et   al.   [3],   the   segmentation   algorithm   of   Jain   and   Yu   [4],   and   the   text   string   separation   algorithm   of   Fletcher   and   Kasturi   [5],   while   top–down   algorithms   are   the   X–Y   cut   algorithm   of   Nagy   [6   and   7],   the   shape-directed-covers-based   algorithm   by   Baird   [8]   and   Baird   et   al.   [9]   and   the   algorithm   on   classification   of   newspaper   image   block   based   on   texture   analysis   of   Wang   and   Srihari   [10].   Pavlidis   and   Zhou   [11]   proposed   a   hybrid   algorithm   using   a   split-and-merge   strategy.   A   survey   can   be   found   in   O’Gorman   and   Kasturi   [12],   in   Tang   et   al.   [13]   and   Jain   and   Yu   [4].  
The   top–down   approaches   begin   with   expectations   about   what   structures   may   appear   in   a   page,   and   they   proceed   to   identify   elements   at   successively   finer   levels   of   granularity.   On   the   other   hand,   the   bottom–up   approaches   typically   begin   with   individual   pixels   or   characters,   and   proceed   to   combine   them   into   larger   units   such   as   words,   lines,   graphic   elements,   etc.,   until   the   entire   page   has   been   analyzed.  
The   success   of   all   these   techniques   is   limited   by   the   quality   of   the   digital   image   that   is   input   to   them.   While   the   method   of   [14]   permits   direct   operation   on   unenhanced   pixels   of   the   scanned   image,   it   still   suffers   from   marginal   artifacts   and   partial   extra   pages.   The   methods   we   present   for   automatically   removing   artifacts   of   photocopying   and   scanning   can   be   used   either   with   our   own   multiresolution   page   segmentation   algorithm   or   with   any   of   the   other   systems.  


[解决办法]
看到英文我就晕
[解决办法]
要耐心,
[解决办法]
装个词霸漫漫看吧...
[解决办法]
装个词霸漫漫看吧...

[解决办法]
给rmb或者usd吧
------解决方案--------------------


d
[解决办法]
我知道CSDN上的朋友是我最坚强的后盾!

请帮我看看:http://community.csdn.net/Expert/topic/5531/5531431.xml?temp=.6267969

[解决办法]
学习
[解决办法]
~-~
[解决办法]
分割页图像经文物影印及扫描油菜cinque , ,一个国会levialdia , 油菜lombardib和S tanimotoc一个dipartimento di scienze dell 'informazione大学罗马 " La Sapienza " ,途经salaria 113号 00198罗马,意大利二dipartimento di informatica e sistemistica , Pavia大学,经编辑1 , 27100帕维亚, 意大利的三部田绪. 和工程箱352350 ,西雅图华盛顿大学,佤族98195 ,美国收到1999年6月18日; 修改2001年2月16日; 接受2001年2月26日在网上2002年2月11日. 摘要分析扫描文件是非常重要的数字图书馆建设和无纸办公室. 一个重大的挑战是应付文物影印和扫描. 我们提出了一系列简单的技术处理这些困难. 用125图像华盛顿大学扫描文件数据库 我们展示的效果,这些方法在编写图像分割的多分辨率的算法. 作者关键词:文献分析; artifact消除; 分割; 打印通过; 边际效应; 局部额外页; 数字图书馆文章概要1 . 引言1.1 . 总动力1.2 . 问题描述2 . 以前的工作3 . 加工方法3.1 . 消除打印通过算法-1-[待遇打印通过] 3.2 . 边际文物和局部加页算法-2-[5治疗边际文物和局部加页] 4 . multiresolution分割方法4.1 . 第一阶段:建造金字塔特征4.2 . 第2阶段:区域划分5 . 实验结果与讨论5.1 . computational考虑6 . 结论提vitae 1 . 引言1.1 . 一般动机网上数字图书馆可以提供更好的信息分布和更灵活的访问途经搜索算法可以比 传统的印刷图书馆. 不过,加上现有的印刷材料,电子图书馆是一个昂贵,过程缓慢,除非好的自动化程序可以发展. 经过学术期刊的文章都复印和/或扫描,其约束,印刷版本, 各种器物常常被引进的图像作进一步分析. 不论这些文物需要拆除,然后再做进一步处理, 或特殊因素必须考虑以下的处理步骤,使他们能包容遗物. 我们解决了文物的开发手段来减少和/或消除他们从扫描图像文件之前 分割. 1.2 . 问题描述打印透过是因当印刷一侧的纸张是看得见的副本或 扫描对方. 它可造成版面分割算法虚假断定一个页包含一张照片时,它实际上包含 唯一文本. 边际文物造成的几个现象复印和扫描: ( 1 )曲率页离玻璃近约束力的出版物, ( 2 )影像边缘的页面背后,一个被扫, 由于歪斜,在当页的出版物是开放的, ( 3 )影像无效范围以外的新的一页, 或( 4 )影像封面的扫描仪或复印机超越边界的页. 另一个棘手的效应是存在着一个局部多页,当复印或扫描过程记录部分 页数面临的一个兴趣. 这些遗物通常会引起任何误解的地区,在随后进行分割或正确识别区域, 不属于该网页的利益,因此是无用的. 问题是发展的手段,消除不必要的文物这种方式,在以后的分割过程 正确地运作. 此外,这种方法应该验证一个大的和现实的数据库的文件图像. 本文组织如下:在第2 ,我们进行了调查,相关文献. 在第3条的分割,我们开发的描述. 在第4节我们介绍我们两个阶段的金字塔执行算法. 在第5我们报导实验结果,并提供了详细的讨论. 终于在第6我们给我们的结论. 2 . 以前工作的几个算法版面分割已提议于文献. 这些算法可以分为三类:自下而上,自上而下的方式和混合方式. tipical自下而上的算法是docstrum算法o 'gorman [1] ,游程平滑算法wahl et al . [2] Voronoi图算法的kise et al . [3] ,分割Jain和钰[4] 与文串分离算法fletcher和kasturi [5] 而自上而下的算法是X y切割算法斯蒂娜[ 6 7 ] 形状指示复盖算法的贝尔德[8]和贝尔德et al . [9]和算法的分类报纸块基于纹理分析王srihari〔10〕. 南风和周〔11〕建议混合使用一个分开合并策略. 一项调查可以发现o 'gorman和kasturi [12] ,唐et al . [13]和Jain和俞[4] . 自上而下的做法,开始与期望什么结构可能出现在首页, 并着手确定分子在相继finer层次的粒度. 在另一方面,自下而上的方法,通常是从个人像素或人物, 进而结合成较大的单位,如文字,线,图形元素等, 直到整页进行了分析. 成功,所有这些技术也是有限的,高质量的数字图像,输入到他们. 虽然法〔14〕许可直接手术unenhanced像素的扫描图像, 还患有轻微的文物和局部加页. 该方法目前我们自动清除文物影印及扫描可以与自己multiresolution 版面分割算法或任何其他系统.
[解决办法]
Look....
[解决办法]
帮顶

[解决办法]
顺便JF

热点排行