首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 教程频道 > JAVA > J2SE开发 >

请问平衡二叉树(AVLtree)的 deleteMin() 操作算法

2012-01-20 
请教平衡二叉树(AVLtree)的 deleteMin() 操作算法各位大哥,小弟最近在想用AVL树实现priority queue的算法(

请教平衡二叉树(AVLtree)的 deleteMin() 操作算法
各位大哥,小弟最近在想用AVL树实现priority queue的算法(当然用heap更简单), 但是对于用AVL树实现deleteMin()的操作,依次删除最小元素,并返回其值,直到删除树的最后一个元素的算法实在想不出来。我知道这其实和插入操作类似,因为删除会破坏平衡,因此需要通过旋转来使树重新平衡,但和插入的过程很不一样,想了几天也没头绪。不知有没有高手可以指点一下,有算法可以分享一下就更好了?下面是我写了一半的程序,插入操作可以正常完成,deleteMin()就有问题了。非常感谢!:)

Java code
public class MyHeap implements PriorityQueue  {              private AVLNode root;//declare the root node               //Construct the AVL tree.        public MyHeap(){            root = null;        }       //Insert new item into the AVL tree.        public void insert(double x){            root = insert(x, root);        }        //Remove the minimum item from the tree and return its value.        public double deleteMin(){               double temp=elementAt(findMin(root));           deleteMin(root);           return temp;        }                //Find and return the smallest item in the tree and return its value.        public double findMin(){            return elementAt(findMin(root));        }        /**         * Check whether tree is empty or not          * return 1-->is empty          * return 0-->is not empty             */        public boolean isEmpty(){            return root == null;        }        // Erases all elements from the AVL tree.        public void makeEmpty(){            while(root!=null)                deleteMin();        }               //return the element associate with node t        private double elementAt(AVLNode t){            return t == null ? null : t.element;        }        /**         * Internal method to insert into a subtree.         * @param x the item to insert.         * @param t the node that roots the tree.         * @return the new root.         */        private AVLNode insert(double x, AVLNode t ){            if( t == null )                return new AVLNode(x,null,null);                        if(x<t.element){                t.left = insert(x, t.left);                if(height(t.left)-height(t.right) == 2 )                    if(x<t.left.element)                        t = rotateLeft(t);                    else                        t = doubleRotateLeft(t);            }                        else if(x>t.element){                t.right = insert(x, t.right);                if(height(t.right) - height(t.left) == 2)                    if(x>t.right.element)                        t = rotateRight(t);                    else                        t = doubleRotateRight(t);            }                        else                ;  // Duplicate; do nothing            t.height = Math.max(height(t.left), height(t.right)) + 1;                        return t;        }        /**         * private method to find the smallest item in the subtree.         * @param t the node that roots the tree.         */        private AVLNode findMin(AVLNode t){            if(t == null)                return null;            while(t.left != null)                t = t.left;                        return t;        }                private AVLNode deleteMin(AVLNode t){            if(t==null)                throw new EmptyHeapException();            else if(t.left!=null){                t.left=deleteMin(t.left);                if(height(t.right)-height(t.left) == 2 )                                            t = rotateLeft(t);                    else                        t = doubleRotateLeft(t);                          return t;            }            else                 return t.right;        }        //in-order traverse the AVL tree        private void traverse(AVLNode t)        {            if( t != null )            {                traverse(t.left);                System.out.println( t.element );                traverse(t.right);            }        }               //Return the height of node t, or -1, if null.        private int height(AVLNode t){            return t == null?-1:t.height;        }                /**         * Rotate AVL tree node with left child.         * this is a single rotation for case 1.         * Update heights, then return new root.         */        private AVLNode rotateLeft(AVLNode root)        {            AVLNode temp = root.left;            root.left = temp.right;            temp.right = root;            root.height = Math.max(height(root.right), height(root.left))+1;            temp.height = Math.max(height(temp.right), height(temp.left))+1;            root=temp;            return root;        }        /**         * Rotate AVL tree node with right child.         * this is a single rotation for case 4.         * Update heights, then return new root.         */        private AVLNode rotateRight(AVLNode root)        {            AVLNode temp = root.right;            root.right = temp.left;            temp.left = root;            root.height = Math.max(height(root.right), height(root.left))+1;            temp.height = Math.max(height(temp.right), height(temp.left))+1;            root=temp;            return root;        }        /**         * Double rotate AVL tree node: first left child         * with its right child; then root with new left child.         * this is a double rotation for case 2.         * Update heights, then return new root.         */        private AVLNode doubleRotateLeft(AVLNode root){            root.left = rotateRight(root.left);            return rotateLeft(root);        }        /**         * Double rotate AVL tree node: first right child         * with its left child; then root with new right child.         * this is a double rotation for case 3.         * Update heights, then return new root.         */        private AVLNode doubleRotateRight(AVLNode root){            root.right = rotateLeft(root.right);            return rotateRight(root);        }              }/*** AVLNode class used in MyHeap class*@ Liyun Zeng*@ 2-1-09*/class AVLNode{    double element;   // The data include in the node    AVLNode left;     // Left child reference    AVLNode right;    // Right child reference    int height;       // Height of this node           // Constructors    AVLNode(double theElement){        this(theElement, null, null);    }    AVLNode(double theElement, AVLNode lt, AVLNode rt ){        element  = theElement;        left     = lt;        right    = rt;        height   = 0;    }} 



[解决办法]
忘了这棵树,帮顶吧

[解决办法]
看到这,就想起了下午应该被我选逃的数据结构课 ╮( ̄▽ ̄")╭
[解决办法]
路过...帮顶!
[解决办法]
树不会,UP

热点排行