在JAVA中实现二叉树结构
*
* 讲解:
* 二个方法函数,一个寻找关键字--searchkey 另一个是插入一个结点:insertTree
* 另外这是一个完全的先序遍历二叉树的语法。先根结点,再左结点,如无再右结点。
* 如此递归至搜索完毕。
*
*/
public class BinaryTreeTest {
private BinaryTree root = null;
public BinaryTreeTest() {
init();
}
/**
* 初始化给定数据的二叉树结构
*
*/
private void init() {
int data[] = { 12, 11, 34, 45, 67, 38, 56, 43, 22, 8 };
root = new BinaryTree(data[0]);
System.out.println("二叉树的中的数据结构:");
System.out.println("------------------------------------");
System.out.println(data[0] + ":root");
for (int i = 1; i < data.length; i++) {
System.out.print(data[i] + ":");
root.insertTree(root, data[i]);
}
System.out.println("------------------------------------");
}
public void serach(int key) {
if (searchkey(root, key)) {
System.out.println("找到了:" + key);
} else {
System.out.println("没有找到:" + key);
}
}
private boolean searchkey(BinaryTree root, int key) {
if (root == null) {
return false;
} else if (root.data == key) {
return true;
} else if (key >= root.data) {
return searchkey(root.rightpoiter, key);
}
return searchkey(root.leftpoiter, key);
}
class BinaryTree {
int data;
BinaryTree leftpoiter;
BinaryTree rightpoiter;
BinaryTree(int data) {
this.data = data;
leftpoiter = null;
rightpoiter = null;
}
private void insertTree(BinaryTree root, int data) {
if (data >= root.data) {
if (root.rightpoiter == null) {
System.out.println(" -> new rightpoiter");
root.rightpoiter = new BinaryTree(data);
} else {
System.out.print(" -> rightpoiter");
insertTree(root.rightpoiter, data);
}
} else {
if (root.leftpoiter == null) {
System.out.println(" -> new leftpoiter");
root.leftpoiter = new BinaryTree(data);
} else {
System.out.print(" -> leftpoiter");
insertTree(root.leftpoiter, data);
}
}
}
}
public static void main(String args[]) {
BinaryTreeTest b = new BinaryTreeTest();
int key = 8; //key:任意数值
b.serach(key); //到二叉树中查找
}
}
运行结果:
C:\java>java BinaryTreeTest
二叉树的中的数据结构:
12:root
11: -> new leftpoiter
34: -> new rightpoiter
45: -> rightpoiter -> new rightpoiter
67: -> rightpoiter -> rightpoiter -> new rightpoiter
38: -> rightpoiter -> rightpoiter -> new leftpoiter
56: -> rightpoiter -> rightpoiter -> rightpoiter -> new leftpoiter
43: -> rightpoiter -> rightpoiter -> leftpoiter -> new rightpoiter
22: -> rightpoiter -> new leftpoiter
8: -> leftpoiter -> new leftpoiter
3COME考试频道为您精心整理,希望对您有所帮助,更多信息在http://www.reader8.com/exam/