首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 考研频道 > 考研数学 >

考研数学解题思维定势二

2008-11-29 
考研数学解题思维定势。

    第二部分 《线性代数解题的八种思维定势》

  1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。
  2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
  3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
  4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。
  5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
  6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
  7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
  8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

    特别说明:本文由3COME考试频道(www.reader8.com/exam)编辑精心为您收集整理,仅供大家参考,由于各方面情况的不断调整与变化,敬请考生以权威部门公布的正式信息为准。


热点排行