首页 诗词 字典 板报 句子 名言 友答 励志 学校 网站地图
当前位置: 首页 > 图书频道 > 计算机与网络 > 操作系统 >

深入Linux设备驱动程序内核机制 [平装]

2014-01-13 
编辑推荐《深入Linux设备驱动程序内核机制》编辑推荐:穿针引线,将Linux设备驱动程序从台前到幕后融会贯通,条
商家名称 信用等级 购买信息 订购本书
深入Linux设备驱动程序内核机制 [平装] 去商家看看
深入Linux设备驱动程序内核机制 [平装] 去商家看看

深入Linux设备驱动程序内核机制 [平装]

编辑推荐

《深入Linux设备驱动程序内核机制》编辑推荐:穿针引线,将Linux设备驱动程序从台前到幕后融会贯通,条分缕析,剖析Linux设备驱动程序使用到的每一个重要的内核设施,高屋建瓴,多层次立体化揭示Linux设备驱动程序的框架结构,化繁为简,简单的示例源码具体验证内核背后的运作机制。

作者简介

陈学松,曾任职于Intel、Marvell等半导体公司,有9年以上Linux内核、设备驱动程序、嵌入式Linux BSP等领域的开发经验。专注于Linux系统内核、BIOS、文件系统及软件虚拟化等技术,曾模仿Linux内核编写过微型操作系统。工作之余喜欢以文章的形式将自己的学习心得进行总结,善于运用图形等元素将复杂概念具体化,梳理脉络而不拘于细节。2005年在旧MLinux开发者论坛所发表的《解析Linux中的VFS文件系统机制》堪称作者这一写作特色的代表之作,该文发表后曾被多家技术网站、论坛及个人博客所转载。
喜欢游泳,四肢发达,胸无城府。古文功底颇深,少时涉猎甚广,现主要阅读一些历史题材类的书籍,熟读《三国志》。目前任职于AMD上海研发中心,主要从事Linux显卡驱动等领域的研发工作。

目录

第1章 内核模块 1
1.1 内核模块的文件格式 2
1.2 EXPORT_SYMBOL的内核实现 5
1.3 模块的加载过程 8
1.3.1 sys_init_module(第一部分) 9
1.3.2 struct module 9
1.3.3 load_module 13
1.3.4 sys_init_module(第二部分) 49
1.3.5 模块的卸载 54
1.4 本章小结 55

第2章 字符设备驱动程序 57
2.1 应用程序与设备驱动程序互动实例 58
2.2 struct file_operations 62
2.3 字符设备的内核抽象 63
2.4 设备号的构成与分配 65
2.4.1 设备号的构成 65
2.4.2 设备号的分配与管理 66
2.5 字符设备的注册 71
2.6 设备文件节点的生成 74
2.7 字符设备文件的打开操作 77
2.8 本章小结 85

第3章 分配内存 87
3.1 物理内存的管理 87
3.1.1 内存节点node 87
3.1.2 内存区域zone 88
3.1.3 内存页 89
3.2 页面分配器(page allocator) 90
3.2.1 gfp_mask 91
3.2.2 alloc_pages 95
3.2.3 __get_free_pages 96
3.2.4 get_zeroed_page 97
3.2.5 __get_dma_pages 97
3.3 slab分配器(slab allocator) 98
3.3.1 管理slab的数据结构 99
3.3.2 kmalloc与kzalloc 105
3.3.3 kmem_cache_create与kmem_cache_alloc 108
3.4 内存池(mempool) 110
3.5 虚拟内存的管理 111
3.5.1 内核虚拟地址空间构成 111
3.5.2 vmalloc与vfree 112
3.5.3 ioremap 115
3.6 per-CPU变量 115
3.6.1 静态per-CPU变量的声明与定义 116
3.6.2 静态per-CPU变量的链接脚本 117
3.6.3 setup_per_cpu_areas函数 118
3.6.4 使用per-CPU变量 121
3.7 本章小结 125

第4章 互斥与同步 127
4.1 并发的来源 127
4.2 local_irq_enable与local_irq_disable 128
4.3 自旋锁 129
4.3.1 spin_lock 130
4.3.2 spin_lock的变体 133
4.3.3 单处理器上的spin_lock函数 136
4.3.4 读取者与写入者自旋锁rwlock 137
4.4 信号量(semaphore) 141
4.4.1 信号量的定义与初始化 141
4.4.2 DOWN操作 142
4.4.3 UP操作 145
4.4.4 读取者与写入者信号量rwsem 146
4.5 互斥锁mutex 148
4.5.1 互斥锁的定义与初始化 148
4.5.2 互斥锁的DOWN操作 149
4.5.3 互斥锁的UP操作 150
4.6 顺序锁seqlock 152
4.7 RCU 155
4.7.1 读取者的RCU临界区 156
4.7.2 写入者的RCU操作 156
4.7.3 RCU使用的特点 157
4.8 原子变量与位操作 159
4.9 等待队列 162
4.9.1 等待队列头wait_queue_head_t 162
4.9.2 等待队列的节点 163
4.9.3 等待队列的应用 164
4.10 完成接口completion 164
4.11 本章小结 168

第5章 中断处理 169
5.1 中断的硬件框架 169
5.2 PIC与软件中断号 170
5.3 通用的中断处理函数 171
5.4 do_IRQ函数 172
5.5 struct irq_chip 178
5.6 struct irqaction 179
5.7 irq_set_handler 180
5.8 handle_irq_event 184
5.9 request_irq 186
5.10 中断处理的irq_thread机制 190
5.11 free_irq 191
5.12 SOFTIRQ 192
5.13 irq的自动探测 196
5.14 中断处理例程 200
5.15 中断共享 201
5.16 本章小结 202

第6章 延迟操作 203
6.1 tasklet 203
6.1.1 tasklet机制初始化 204
6.1.2 提交一个tasklet 205
6.1.3 tasklet_action 209
6.1.4 tasklet的其他操作 212
6.2 工作队列work queue 214
6.2.1 数据结构 214
6.2.2 create_singlethread_workqueue和create_workqueue 216
6.2.3 工人线程worker_thread 219
6.2.4 destroy_workqueue 221
6.2.5 提交工作节点queue_work 224
6.2.6 内核创建的工作队列 229
6.3 本章小结 230

第7章 设备文件的高级操作 231
7.1 ioctl文件操作 231
7.1.1 ioctl的系统调用 231
7.1.2 ioctl的命令编码 235
7.1.3 copy_from_user和copy_to_user 238
7.2 字符设备的I/O模型 243
7.3 同步阻塞型I/O 244
7.3.1 wait_event_interruptible 244
7.3.2 wake_up_interruptible 246
7.4 同步非阻塞型I/O 250
7.5 异步阻塞型I/O 251
7.6 异步非阻塞型I/O 258
7.7 驱动程序的fsync例程 259
7.8 fasync例程 260
7.9 llseek例程 269
7.10 访问权能 272
7.11 本章小结 273

第8章 时间管理 274
8.1 jiffies 274
8.1.1 时间比较 277
8.1.2 时间转换 278
8.2 延时操作 279
8.2.1 长延时 280
8.2.2 短延时 285
8.3 内核定时器 286
8.3.1 init_timer 289
8.3.2 add_timer 289
8.3.3 del_timer和del_timer_sync 293
8.4 本章小结 293

第9章 Linux设备驱动模型 295
9.1 sysfs文件系统 295
9.2 kobject和kset 298
9.2.1 kobject 298
9.2.2 kobject的类型属性 305
9.2.3 kset 308
9.2.4 热插拔中的uevent和call_usermodehelper 311
9.2.5 实例源码 320
9.3 总线、设备与驱动 328
9.3.1 总线及其注册 328
9.3.2 总线的属性 335
9.3.3 设备与驱动的绑定 338
9.3.4 设备 339
9.3.5 驱动 348
9.4 class 351
9.5 本章小结 355

第10章 内存映射与DMA 356
10.1 设备缓存与设备内存 356
10.2 mmap 356
10.2.1 struct vm_area_struct 357
10.2.2 用户空间虚拟地址布局 358
10.2.3 mmap系统调用过程 362
10.2.4 驱动程序中mmap方法的实现 368
10.2.5 mmap使用范例 373
10.2.6 munmap 383
10.3 DMA 384
10.3.1 内核中的DMA层 384
10.3.2 物理地址与总线地址 386
10.3.3 dma_set_mask 387
10.3.4 DMA映射 388
10.3.5 回弹缓冲区(bounce buffer) 401
10.3.6 DMA池 401
10.4 本章小结 405

第11章 块设备驱动程序 407
11.1 块子系统初始化 408
11.2 ramdisk源码实例 410
11.2.1 make_request版本的RAM DISK源码 411
11.2.2 request版本的RAM DISK源码 416
11.2.3 ramdisk的使用 420
11.3 块设备号的注册与管理 422
11.4 block_device 424
11.5 struct gendisk 425
11.6 struct hd_struct 428
11.7 用alloc_disk分配gendisk对象 428
11.8 向系统添加一个块设备add_disk 430
11.9 block_device_operations 439
11.10 块设备文件的打开 440
11.11 blk_init_queue 448
11.12 blk_queue_make_request 459
11.13 向队列提交请求 460
11.14 块设备的请求处理函数 466
11.15 bio结构 467
11.16 本章小结 472

第12章 网络设备驱动程序 473
12.1 net_device 475
12.2 网络设备的注册 488
12.3 设备方法 492
12.3.1 设备初始化 494
12.3.2 设备接口的打开与停止 495
12.3.3 数据包的发送 495
12.3.4 网络数据包发送过程中的流控机制 500
12.3.5 传输超时(watchdog timeout) 503
12.3.6 数据包的接收 506
12.4 套接字缓冲区 510
12.5 中断处理 518
12.6 NAPI 520
12.7 本章小结 522

文摘

版权页:



插图:



模块最大的好处是可以动态扩展应用程序的功能而无须重新编译链接生成一个新的应用程序映像,这种广义上的模块概念其实并非Linux系统所特有,在微软的Windows系统上动态链接库DLL(Dynamic Link Library)便是模块概念的一个典型应用场景,对应到Linux系统上这种模块以所谓的共享库so(shared object)文件的形式存在。
本章要讨论的主题-Linux内核模块,在概念及原理方面与上面提到的DLL和so模块类似,但又有其独特的一面,内核模块可以在系统运行期间动态扩展系统功能而无须重新肩动系统2,更无须为这些新增的功能重新编译一个新的系统内核映像。内核模块的这个特性为内核开发者开发验证新的功能提供了极大的便利,因为像Linux这么庞大的系统,编译一个新内核并重新启动将浪费开发者大量的时间。虽然设备驱动程序并不一定要以内核模块的形式存在,并且内核模块也不一定就代表着一个设备驱动程序,但是内核模块的这种特性似乎注定是为设备驱动程序而生。Linux系统下的设备驱动程序员在开发一个新的设备驱动的过程中,使用的最多的工具之一是insmod,这就是一个简单的向系统动态加载内核模块的命令。
很难想象,如果没有insmod这样的机制,在Linux底下调试一个设备驱动会是怎样的一件让人痛苦抓狂的事情!笔者相信,任何一个在Linux上面有过实际的驱动程序开发经历的人都会有类似的感受。Linux系统虽然为内核模块机制提供了完善的支持,使得其下的内核模块是如此强大,然而现实中事情往往并非如预想的那样一帆风顺,如果对其幕后的机制不甚了解,在实际的开发过程之中,除了驱动程序自身要实现的功能可能会遇到麻烦以外,在利用Linux中的内核模块机制时,也会遇到各种各样的问题,比如在用insmod命令加载一个模块时,就很可能会碰到类似下面的错误信息。

喜欢深入Linux设备驱动程序内核机制 [平装]请与您的朋友分享,由于版权原因,读书人网不提供图书下载服务

热点排行